
 

MACHINE LEARNING BASED ADAPTIVE WATERMARK 

DECODING IN VIEW OF ANTICIPATED ATTACK  
Asifullah Khan

a, *
, Syed Fahad Tahir c, Abdul Majid b, and T. S. Choia 

aDepartment of Mechatronics, Gwangju Institute of Science and technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of 

Korea, Email:  {asifullah, tschoi}@gist.ac.kr  
bDepartment of Information and Computer Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan,  

Email: ab_majid@pieas.edu.pk: 
cFaculty of Computer Science  & Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science & Technology, Swabi, Pakistan,  

Email: fahad_290@yahoo.com 

 

Abstract  

We present an innovative scheme of blindly extracting message bits when a watermarked image is distorted. In 

this scheme, we have exploited the capabilities Machine Learning (ML) approaches for nonlinearly classifying 

the embedded bits. The proposed technique adaptively modifies the decoding strategy in view of the anticipated 

attack. The extraction of bits is considered as a binary classification problem. Conventionally, a hard decoder is 

used with the assumption that the underlying distribution of the Discrete Cosine Transform coefficients do not 

change appreciably. However, in case of attacks related to real world applications of watermarking, such as 

JPEG compression in case of shared medical image warehouses, these coefficients are heavily altered. The 

sufficient statistics corresponding to the maximum likelihood based decoding process, which are considered as 

features in the proposed scheme, overlap at the receiving end, and a simple hard decoder fails to classify them 

properly. In contrast, our proposed  ML decoding model has attained highest accuracy on the test data. 

Experimental results show that through its training phase, our proposed decoding scheme is able to cope with 

the alterations in features introduced by a new attack. Consequently, it achieves promising improvement in 

terms of Bit Correct Ratio in comparison to the existing decoding scheme. 

 

Keywords:  Watermarking, Support Vector Machines (SVM), Artificial Neural Networks (ANN), Discrete 

Cosine Transform (DCT), Bit Correct Ratio (BCR), Decoding. 

 

 

1. Introduction  
Watermarking, closely related to the fields of cryptography and steganography, is the art of imperceptibly 

altering a digital medium to embed a message about that digital medium. With the wide spread and complex use 

of digital medium, a question about the security of the digital medium arises immediately.  This concern is 

effectively addressed by watermarking, owing to its three nice characteristics; imperceptibility, inseparability 

from the cover content, and its inherent ability to undergo the same transformations as experienced by the cover 

content. In addition, it can be employed on many digital medium like text, audio, images, graphics, movies and 

3D models. Its purpose is largely to counter problems like unauthorized handling, copying and reuse of 

information. Pertinent applications of watermarking include ownership assertion, authentication, broadcast 

monitoring and integrity control [1-2]. 

Watermarking scheme is mostly designed in view of its applications. Decoding of a watermark from the 

watermarked image is an important phase of a watermarking system, especially, when an attack on the 

watermarked image is highly probable. There is no such watermark decoding scheme that can perform well 

under all hostile attacks. However, with the growing need of sophisticated watermarking applications, we need a 

decoding scheme that should perform well under a specific set of conceivable attacks. Generally, channel noise 

and JPEG compression are the two most common attacks. They can appreciably change the underlying 

distribution of Discrete Cosine Transform (DCT) coefficients. The traditional decoders assume that the 

distribution of DCT coefficients is not heavily altered and thus are not able to retain performance under such 

attacks. In contrast, the proposed Machine Learning (ML) decoding models are able to learn the distribution of 

the altered coefficients and achieve a significant margin of improvement. However, the trained ML decoding 

model has to be provided at the decoding side for blindly extracting the message bits. Depending upon the 

nature of the watermarking application, we can make the trained ML decoding model public. On the other hand, 

the trained model can be provided through a private channel or encrypted along with other secret knowledge of 

the watermarking system. The encryption layer that overlays above the watermarking layer could be very 

effective in enhancing the overall security of the watermarking system [3]. In essence, the constraint of making 

the trained model private on one-side limits its applications, but on the other side, enhances the security of the 

watermarking system [4], especially, if we consider the complex security requirement of unauthorized decoding 

[3]. The potential applications of such adaptive ML decoding techniques could be like device control, and 

broadcast monitoring, as in both cases the ML decoding scheme can be employed in hardware form with the 



 

capability of adaptively modifying in view of the new attacks. Piracy detection and copyright demonstration 

when associated with a copyright authentication center could also be potential applications. 

Recently, Support Vector Machines (SVM) and Artificial Neural Networks (ANN) based ML techniques have 

been applied to improve watermarking systems [5-12]. Especially, some researchers have concentrated on 

developing strategies for watermark detection/decoding by exploiting the learning capabilities of ML 

techniques. However, in the present work, we present a novel idea of adaptively modifying the decoding 

strategy in view of a specific application of the watermarking system. For example, consider a watermarking 

application where it is highly probable to JPEG compress the watermarked images before transmission or 

storing in an image warehouse, such as shared medical image warehouses utilized for remote diagnostic aid 

applications and telesurgery. In such a scenario, it is judicious to exploit the learning capabilities of ML systems 

by providing it information about the distortion caused by the JPEG compression during its training phase. Once 

the ML Decoding model is developed, it can be effectively employed for blindly extracting the embedded 

message from the distorted image. Other pertinent examples of such specific applications consist of a channel 

characterized by Gaussian noise, intentional or unintentional filtering, valuematric distortion, etc.  

Our main contributions in this regard are as follows:  

• Bit extraction is considered as a binary classification problem in view of hostile attacks. 

• Exploitation of the fact that distortion caused by a single attack might have incurred varyingly on 

different frequency bands.  

• Employment of SVM and ANN based ML models for adaptively developing high performance 

watermark decoding in view of its intended application. 

The remaining part of this paper is organized such that section 2 describes the related research work. Section 3 

provides a brief overview of ANN and SVM techniques. Our proposed watermark decoding scheme is described 

in section 4. This includes dataset generation as well as the development of ML based decoding models. Results 

and discussion are explained in section 5, followed by conclusion in the last section.  

We use many abbreviations and for reader clarity, we explicitly mention these abbreviations in this section. 

They include, Support Vector Machines (SVM), Artificial Neural Networks (ANN), Discrete Cosine Transform 

(DCT), Machine Learning (ML), Threshold based Decoding (TD), and Bit Correct Ratio (BCR). 

2.  Related Research Work 

Some researchers have put sizable effort to develop new decoder structures for increasing decoding 

performance. For example, Barni et al. [13] have proposed a new decoding algorithm that is powerful in case of 

non-additive watermarking techniques. Likewise, Hernandez et al. [14], Nikolaidis et al. [15] and Briassouli et 

al. [16]-[17] have developed nonlinear detection/decoding structures that improve on the correlation-based 

techniques frequently used in watermarking systems. Their models exploit the properties of probability density 

functions of the transform domain coefficients of the cover work. Nevertheless, these efforts do not present a 

generic scheme that could easily develop a decoder useful in case of a new watermarking application and the 

subsequent attack. As such, there is a strong need of easily generating application-specific decoders. These 

decoders need to be blind as well as effective against the conceivable attack.  

 

ML models both in watermarking and Steganography are effectively employed at the embedding, detection and 

decoding stages [5-12]. For instance, very recently, Fridrich et al . [5] have shown improved blind steganalysis 

by Merging Markov and DCT features and utilizing SVM. Fu et al. [6] have applied SVM for logo detection. 

The difference in the intensity level of pixels’ blue components is used for training the SVM. Lyu et al. [7] 

utilize the learning capabilities of SVM to classify watermarked images based on the high-order statistical 

models of natural images.  Shen et al. [8] employ Support Vector Regression at the embedding stage for 

adaptively embedding the watermark in the blue channel in view of the human visual system. On the other hand, 

Sang et al [11] have proposed a zero-watermark scheme that employs ANN for feature extraction. Recently, 

Wang et al. [9] have proposed an ANN controller for selecting the strength of the embedded data in view of the 

human audio system. Similarly, Li et al. [12] have used Independent Component Analysis to extract watermark 

blindly. Yet, the performance of their system is dependent on the statistical independence between the original 

cover work and the watermark. Nonetheless, none of these ML based approaches take into consideration the 

intended application and consequently are not adaptive towards a new anticipated attack while 

detecting/decoding the watermark. 

As far as the applications of Genetic Programming (GP) in watermarking are concerned, Khan et al. [19-21] 

have used GP for perceptually shaping watermark with respect to both the conceivable attacks and cover image 

at the embedding stage.   In a recent work, Khan [18] has proposed the modification of decoder structure using 

GP in accordance to both the cover image and conceivable attacks. However, in his proposed scheme, the 

sufficient statistics of the maximum likelihood based information decoding process are modified using the 

genetically evolved nonlinear mapping function. The modified sufficient statistics are then presented to a 



 

threshold-based decoder. In contrast, in the present work, this nonlinear mapping in view of the anticipated 

attack is achieved inherently through the kernel functions in case of SVMs, and hidden layers in case of ANN.  

As for as distortions suffered by a watermarked data are concerned, various researchers, e.g. Cox et al. [1], and 

Piva et al. [2] have studied and categorized these distortions. For example, addition of different types of noise, 

signal processing attacks such as D/A conversion, color reduction, linear filtering attacks like high pass and low 

pass filtering, lossy compression, geometric distortions etc. Keeping in view these distortions, researchers have 

also investigated various approaches to make watermark system more reliable. They have proposed redundant 

embedding, selection of perceptually significant coefficients, spread spectrum modulation and inverting 

distortion in the detection phase [1]. Efforts are put in to theoretically evaluate the performance of a 

watermarking sachem in presence of a specific distortion. For instance, the performance of spread-transform 

dither modulation watermarking system is theoretically evaluated assuming non additive attacks [22]. In another 

recent work, Cox et al [23], incorporate the idea of perceptual shaping into spread transform dither modulation 

based watermarking scheme for improving imperceptibility as well as robustness against JPEG compression. In 

contrast, we exploit the learning capabilities of both SVM and ANN models for adaptively modifying the 

decoding mechanism in view of a specific attack. This is accomplished by training the proposed ML decoding 

model in view of the specific attack. Our present work is an extension of our previous work [24], where we have 

analyzed the performance of SVM based decoding only against Gaussian noise attack. However, in the present 

work, we not only analyze and compare the performance of different ML decoding models using both self-

consistency and cross validation techniques, but also study their performance against diverse benchmark attacks. 

 

3. Machine Learning Techniques 

3.1 ANN Models 

ANN based ML techniques are extensively used in pattern recognition. They are mostly categorized in terms of 

supervised and unsupervised learning algorithms. The ANN networks present a distinct way to analyze data, and 

to recognize patterns within the data [25-26]. A network is characterized by its architecture, learning method 

and activation function. Architecture of a neural network describes the pattern in which the neurons are 

interconnected. In this work, we are using supervised ANN models in which n input training pairs ( , )i ix y , 

where
N

ix R∈ and [ 1,1]iy ∈ − , are presented to the ANN network.  

In order to develop ANN decoding scheme, back-propagation learning algorithm is employed during training 

phase. This algorithm computes the error e, for output neuron j, as follows: 

( ) ( ) ( )j j je t z t y t= −  (1) 

where 
jz and 

jy  are the actual and target output for neuron j for iteration t. The average squared error of the 

network is obtained as:  

1

1
( ) ( )

n

avg

t

t t
n

ξ ξ
=

= ∑  (2) 

where, 21
( ) ( )

2
j

j P

t e tξ
∈

= ∑ , represents instantaneous sum of squared errors and P indicates number of neurons in 

the output layer. The average error 
avgξ  is a cost function of the network, which helps the network learn using 

the training samples. The objective of the learning process is to adjust the free parameters (weights, learning 

rate, and steepness of the activation function) of the network to minimize
avgξ .  

The weight vector w  and the bias b are updated according to Levenberg-Marquardt Algorithm [27]. This 

algorithm works iteratively in search of weights and biases that minimize the cost function; mostly the sum-

squared of the difference between the target and network output responses. While training moderate-sized 

networks, this algorithm trains neural networks at a rate 10-100 times faster than the usual gradient descent 

based back-propagation method. In this algorithm, the updated weights wn+1 are computed as: 

eJIJJ TT

nn ww 1

1 ][ −
+ +−= µ  (3) 

where, µ  and e denotes a constant scalar and a vector of network error respectively. J represents the Jacobean 

matrix, which contains first derivatives of the network errors with respect to the weights and biases. 

3.2 SVM Models 



 

SVM is a margin-based classifier having excellent generalization capabilities [28-29]. Such models try to find 

an optimal separating hyper-plane between data points of different classes in a high dimensional space. The 

error in SVM models occur if the data points appear on the wrong side of the boundary. In case of a linearly 

separable data, a hyper-plane is determined by maximizing the distance between the support vectors. 

Consider n training pairs ( , )i ix y , where
N

ix R∈ and [ 1,1]iy ∈ − , the linear decision surface is defined as: 

( )
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n
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where, 0iα > . In order to find an optimal hyper-plane, the solution of the following optimization problem is 

sought. 

1

1
( , )

2

N
T

i
i

w w w Cξ ξ
=

Φ = + ∑ ,      (5) 

subject to the condition ( )( ) 1 , 0.
T

i i i i
y w x b ξ ξΦ + ≥ − ≥  

where C > 0 is the penalty parameter of the error term 
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∑  and Φ(x) is nonlinear mapping. The weight vector 

w  minimizes the cost function term w
T 

w. Each point Φ(x) in the new space is subject to Mercer’s theorem [29], 

in which kernel functions are defined as:  
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In order to obtain different SVM classification models, we have investigated performance of the following three 

popular kernel functions: 

• ( , ) .T
i j i jK x x x x= (Linear kernel with parameter C) 

• 
2

( , ) exp( )i j i jK x x x xγ= − − (RBF with kernel parameters γ, C)  

• ( , ) [ , ]d
i j i jK x x x x rγ= < > + (Polynomial kernel with parameters γ, r, d and C) 

4. Proposed Watermark Decoding Scheme 

For comparative analysis, we have implemented the watermark scheme proposed by Hernandez et al. [14]. This 

watermarking technique is oblivious and embeds message into the low and mid frequency coefficients of 8x8 

DCT blocks of a cover image. In their scheme, they model the DCT coefficients of each frequency band using 

generalized Gaussian distribution. One of the reasons for using this watermarking scheme in our comparative 

analysis is that it employs DCT in blocks of 8x8 pixels, in a manner similar to the widely used JPEG 

compression algorithm. Secondly, this watermarking scheme has strong theoretical foundations [14]. They have 

employed a TD scheme assuming that the probability density function of the original coefficients remains the 

same even after embedding. However, this assumption may not be valid when attack is performed on the 

watermarked image. In their maximum likelihood based watermark extraction scheme, first, sufficient statistics 

corresponding to each embedded bit is computed and then it is compared with a threshold.  In the absence of an 

attack, two non-overlapping distributions of the sufficient statistics, corresponding to +/- 1 bits are generated as 

shown in figure1-a. Under such circumstances, a simple TD model is sufficient to decode +/-1 bits from the 

watermarked image. However, we have observed that in case of an attack on the watermarked image, these 

distributions overlap as shown in  figure1-b. Consequently, simple TD model is unable to decode the message 

bits efficiently.  

To address such message decoding problems in watermarking, we propose a novel idea of decoding the message 

bits using SVM and ANN based ML techniques. We assume that a non-separable message in lower dimensional 

space might be separable if it is mapped to higher dimensional space. This mapping to higher dimensional space 

is what the hidden layers in case of ANN and the kernel functions in case of SVM are achieving. 

 (a) (b) 

Figure 1: Distribution of sufficient statistics of the maximum likelihood based decoding system corresponding 

to +/-1 bits; (a) before and (b) after Gaussian Attack (σ =10) 

 

In our proposed scheme, a generalized dataset is created (section 4.1) for developing SVM and ANN models. 

Their performance is evaluated by using self-consistency and cross-validation techniques. In self-consistency, 

the performance of classification models is reported using the training dataset. However, in cross-validation, 

entirely different test dataset is used. In analogy to pattern recognition, a bit corresponds to a sample and a 

message corresponds to a particular pattern of these samples. 



 

SVM classification models are developed by using linear, polynomial and RBF kernel functions. The kernels 

functions in SVM model are optimized by using grid search technique. In grid search, optimal values of kernel 

parameters are obtained by selecting various values of grid range and step size. ANN models based on back-

propagation algorithm [27] are also developed. Finally, a comparative analysis of SVMs, ANN and TD models 

is carried out. Our decoding scheme mainly consists of following two modules, as shown in figure 2:  

(1) Dataset Generation module, and 

(2) Machine Learning based Decoding Module. 

It should be noted that in the current work, we are focusing only on the message retrieval using intelligent 

techniques and thus have employed the simple but commonly used error correction technique,  i.e. repetition 

coding. Employment of advanced error correction strategies [30-31], for example, trellis [32], low-density 

parity-check [33], and turbo [34] coding, would certainly improve the overall message retrieval performance in 

all of the cases.  

Figure 2: Basic block diagram of the proposed ML decoding system 

 

4.1 Proposed Dataset Generation 

 
In order to analyze the performance of our proposed scheme, we have generated a dataset of 16000 bits. For this 

purpose, five different images, each of size 256256× , are used. Next, a message of size 128 bits is embedded in 

each image. The whole process is repeated 25 times by changing the secret key used to generate the spread 

spectrum sequence. In this way, it produces 125 different messages and consequently, 125 different 

watermarked images. Gaussian noise attack with σ=10 is applied on each image. Finally, sufficient statistics 

corresponding to each embedded bit for every watermarked image is computed. This produces a data set 

of 12812516000 ×= bits. In this way, we form a data set representing 125 different messages, being embedded 

in five different types of images generating 16000 bits. This dataset is assumed a generalized one, as we have 

taken into account the effect of both the cover image distribution, and the secret key on the sufficient statistics. 

Table 1 shows the different parameters of our data set. A similar approach is taken in case of Wiener and JPEG 

compression attacks. 

 

Table 1:  Parameters of input dataset 

 
4.1.1 Generating Attacked Watermarked Images 

The underlying watermarking technique that we have used to analyze ML based decoding is the spread 

spectrum based watermarking approach proposed by Hernandez et al. [14]. In this approach, the product of the 

spread-spectrum sequence and expanded message bits is multiplied with a perceptual mask [ ]kα to obtain the 

watermark. Let us denote the 2-D discrete indices in DCT domain by [ ]k . The 2-D watermark signal [ ]kW  is 

given as:  

[ ] [ ] [ ] [ ]kkkk α⋅⋅= bSW  (7) 

where [ ]kS  is a pseudo random sequence and [ ]kb is the repetition-based expanded code vector, corresponding to 

the message to be embedded. Adding this watermark to the original image in transformed domain, represented 

by [ ]X k , performs the embedding:  

[ ] [ ] [ ]kkk WX +=Y         (8) 

where [ ]kY  represents the watermarked image.  

In analogy to communications, the watermark [ ]kW is our desired signal, while the cover image [ ]kX  acts as an 

additive noise. Algorithm 1 contains a high-level description for generating attacked watermarked images using 

different images and secret keys. 



 

 

 

4.1.2 Proposed Feature Extraction 

When a watermarked image is attacked, the message within the image is also corrupted. We have computed 

features corresponding to each bit of a message, in two different ways. In the first method, the sufficient 

statistics 
ir  corresponding to each bit of the maximum likelihood based decoding system across all the 

frequency bands is computed [14]. Therefore, we obtain a random value
ir  corresponding to each bit as given 

below: 
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(9) 

where, Gi denotes the sample vector of all DCT coefficients in different 8 8×  blocks that correspond to a single 

bit i, σ represents the standard deviation of the distribution, while c dictates the shape of generalized Gaussian 

distribution. The values of c and σ are estimated from the received watermarked image at the decoding stage. 

For bipolar signal, [ ] [ 1,1]b ∈ −k , the estimated bit ˆ
ib in TD model is computed as follows:  

ˆ sgn ( ) {1 2 , }
i i

b r i , , N= ∀ ∈ �  (10) 

 In the second method, we do not compute sufficient statistics across all the frequency bands; rather we compute 

it across the same channel. In this case, the sample vector Gi used in equation 9 changes to G
j
i, which is defined 

as the sample vector of all DCT coefficients in different 8×8 blocks that correspond to a single bit i and the jth 

frequency band. This allows us to keep the sufficient statistics across each frequency band as a feature itself. 

Therefore, corresponding to a single bit, the number of features is equal to the number of selected frequency 

bands. As described in detail in section 6, mostly, we have selected 22 frequency bands and consequently, 22 

features. This is because ML models, as against the TD model, have the capability to exploit the different 

frequency bands by learning their corresponding level of distortion incurred by the attack. Each sample in the 

training dataset consists of a pair of input pattern of 22 features and the corresponding target value. The target 

value consists of the original bit embedded in the image. These target values of training dataset are used to make 

the SVM model learn the behavior of bits when distorted by an attack. Algorithm 2 describes the main steps 

involved in extracting features for the proposed ML decoding scheme from the attacked watermarked images. 

Algorithm 1: Generating watermarked image Database 

//We omit the 2-d vector indices [k] for elaboration purpose 

//x, y: original and watermarked images respectively in spatial domain 

//fa: attack function,  z: attacked watermarked image 

//X, Y: original and watermarked images respectively in DCT domain 

//W: watermark, S: spread spectrum sequence, b: expanded message vector  

//  α: perceptual mask, Imax: No. of images, Qmax: No. of secret keys 

1: Encode the message of size 128 bits using an error correction technique and expand it to form a vector b 

2:     for  i←1 to Imax do                //select different standard images 

3:          X=DCT2(x)                     //compute 8x8 block DCT of the image 

4:          X
i 
←X   

5:          αi 
←α                               //compute perceptual mask of  the image 

6:          for q ←1 to Qmax, do       //select different secret keys 

7:               generate Sq                 //generate the spread spectrum sequence 

8:               W= αi.Sq.b                  // compute the watermark 

9:               W
i
q

 
←W   

10:             Yi
q =Xi + Wi

q              //perform watermark embedding 

11:             y
i
q=invDCT2(Y

i
q)       //perform inverse DCT 

12:             z
i
q=fa(y

i
q)                     //perform attack on the watermarked image 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.3 Data Sampling Techniques Utilized  

To investigate the performance analysis of our proposed decoding scheme, we have employed both the self-

consistency and cross-validation data sampling techniques. The aim of using self-consistency technique is to 

check the performance of trained SVM and ANN decoding models on the training dataset. However, cross-

validation technique is used to develop a generalized decoding model that can perform well even on the novel 

data samples. In this technique, the whole dataset is divided into four equal parts. One part is selected for 

training and the remaining three are kept for test purpose. This process is repeated four times so that whole 

dataset can be used in 4-fold. Finally, average BCR of the classification models are computed.  

 

4.2 Developing Machine Learning based Decoding Models 

4.2.1 Performance Measure 

In this work, we have compared the performance of classification models in terms of BCR. It is computed as 

follows: 

( )
( )

1,

m

m

L
m m

i i
iBCR M M

L

′⊕∑
=′ =  

(11) 

 

where M represents the original, while M ′ represents the decoded message, 
m

L is the length of the message and 

⊕  represents exclusive-OR operation. It should be noted that (1 )BCR−  represents the bit incorrect ratio. Even 

a small margin of improvement in BCR can heavily affect the performance of a watermarking system. 

 

 
4.2.2 Developing SVM models 

In order to develop Linear, RBF, and Poly-SVM models, we have used ‘LIBSVM’ toolbox [35]. This toolbox 

has all the basic functions for creation and training of SVM models.  

4.2.2.1 Parameter optimization of SVM models: 

The performance of SVM models can be optimized by using various optimization techniques [29], [36-38]. 

However, we have employed the most simple but efficient grid search technique, as described in [29]. This 

technique helps to find the optimal values of SVM kernel parameters by selecting appropriate grid range and 

step size. Poly-SVM has four adjustable parameters d, r, γ and C. On the other hand, for simplicity, the value of 

degree, d and coefficient, r are priori fixed at d = 3, r = 1. By using grid search, the optimum value of C is 

computed in the range of [2
-2

,  2
2
] with step size of ∆C equal to 0.4. Similarly, the optimal value of γ is 

computed in the range of [2-2 , 28] with step size of ∆γ = 0.4. In case of RBF-SVM, the estimated range and step 

size of C and γ are given as; C = [2
-2

 , 2
2
] with ∆C = 0.4, γ = [2

-2
 , 2

8
] with ∆γ = 0.4.  The optimal value of C, for 

linear kernel is obtained by adjusting the grid range of C = [2
-2

 , 2
5
] with step size of ∆C = 0.4. The overall 

behavior of RBF-SVM model during the optimization of the values of C and γ is shown in figure 3. This figure 

shows the relatively high dependency of RBF-SVM model on the parameter γ than that of C. 

 

 
Figure 3: BCR performance dependency of RBF-SVM based decoding model on parameters C and γ.  

Algorithm 2: Feature Extraction for the proposed ML decoding model 

//We omit the 2-d vector indices [k] for elaboration purpose 

//x, y: original and watermarked images in spatial domain  respectively 

//X, Y: original and watermarked images in DCT domain respectively,  ri: //sufficient statistics 

//W: watermark, S: spread spectrum sequence, b: expanded message vector  

//C, �: shape parameter, and standard deviation of the Generalized Gaussian //distribution respectively  

//  α: perceptual mask, Imax: No. of images, Qmax: No. of secret keys 

1:   for  i←1 to Imax do                //select different standard images 

2:          X=DCT2(x)                  //compute 8x8 block DCT of the image 

3:          Xi 
←X   

4:          α
i 
←α                            //compute perceptual mask for the image 

5:          for q ←1 to Qmax, do                 //select different secret keys 

6:                generate Sq                          //generate the spread spectrum sequence   

7:                compute C, and  � for each frequency band using maximum        likelihood   estimation [14] 

8:                compute feature ri corresponding to each bit using equation 9 



 

 

 

4.2.3 Developing ANN models 

The implementation of back-propagation algorithm is carried out by using Neural Network Toolbox of 

MATLAB 7 [25]. In order to use this toolbox, first, we initialize the hidden and output layer units, activation 

functions of hidden and output layers, stopping criterion and the training algorithm. First and second hidden 

layers are configured with 25 and 15 neurons respectively. All the necessary parameters setting of ANN model 

for a dataset of 16000 bits and exploiting 22 features are shown in Table 2. 

Table 2: Parameter settings for ANN based decoding method effective against Gaussian noise attack 

 
The activation functions of ANN models describe the behavior of neurons. These functions may be linear and 

nonlinear. A list of the used linear and nonlinear activation functions is given in Table 3. 

Table 3: Activation functions used in the proposed ANN decoding model 

A block diagram of the ML based watermark extraction process is shown in figure 4. After computing the 

features, the trained ANN/SVM models are employed to carry out the message extraction process. 

Figure 4: watermark extraction  

5. Potential Applications of Proposed ML Decoding Scheme 

In this section, we discuss the potential applications of our proposed ML based adaptive watermark decoding 

scheme. We conceive two scenarios. In the first type of applications, only trained ML model has to be utilized. 

On the other hand, in the second scenario, we might expect change in type of attack. In this 2
nd

 case, the full ML 

system has to employed in form of a chip. 

In case of shared medical information, such as PACS (Picture Archiving and Communication Systems) [39], 

and DICOM (Digital Imaging and Communications in Medicine) [40], the images are compressed to reduce 

both memory and bandwidth requirements [41]. In such a scenario, JPEG compression attack is almost 

inevitable, and therefore, we need to develop an ML based decoding model for extracting the message blindly. 

The trained ML model could be then deployed as small chip achieving a significant margin of improvement in 

terms of BCR. As far as health related projects are concerned, a small hardware cost would be of no match to 

extracting information about the cover data accurately. 

Similar approaches needs to be considered in broadcast monitoring [42], and device control [43]. The trained 

ML decoding models could be deployed  in form of a chip in view of the inevitable attacks, such as channel 

noise in case of broadcasting only, and digital to analog conversion in case of both broadcasting and device 

control. 

 Applications related to the second scenario are akin to secure digital camera [44], and those mobiles able to 

extract hidden information from plain sight [45]. In both of these applications image acquisition and its further 

processing is involved. However, the user may also be provided with options of focusing, contrast stretching, 

etc. In such a case of varying attacks, the user may spare few seconds to let the onboard ML model learn the 

distortion occurred due to the new attack.   

6.   RESULTS AND DISCUSSION 

6.1 Watermark Strength and Imperceptibility Analysis 
First, we analyze the strength of the watermark and consequently its affect on the imperceptibility. Generally, 

it is assumed that higher the strength of the watermark, the higher will be the robustness, although it has been 

practically shown that this may not always be the case [20]. However, high strength means high distortion of 

the original image and thus low imperceptibility. Therefore, we show that even though keeping a fair amount 

of imperceptibility, our proposed ML models are able to retrieve the embedded message from the attacked 

watermarked image.  For this purpose, we first visually analyze the imperceptibility of the watermarked 

images as explained in [19-20]. Figure 5 and 6 shows the original and watermarked couple image 

respectively. As obvious, the distortion in the watermarked image is almost impossible to be detected by a 

human eye. It means that imperceptibility is and consequently low power embedding is performed. This high 

imperceptibility lays down a limit on the capability of the decoding models, as robustness usually requires 

high power embedding. In this connection, figure 7 shows the distribution of the watermark for Couple image 

across both frequency and no. of blocks. It can be easily observed that the amplitude of the watermark varies 

not only from block to block, but also inside each block. In figure 7, if we pick a selected DCT coefficient 

and vary the block number, then we can realize the watermark strength variation across a single frequency 

band. Each of these 22 selected frequency bands have different variation in watermark strength and thus 

should be dealt with separately.  



 

Figure 5: Original Couple Image 

Figure 6: Watermarked Couple Image 

Figure 7: Distribution of the watermark for Couple Image 

 

6.2 Distortion Analysis 

In this section, we analyze visually, the amount of distortion introduced by the attack. This is because small 

distortion incurred by a weak attack may not alter the performance of the traditional TD model. Therefore, we 

try to compare the performance of the decoding systems in a harsh but same environment. Figure 8 and 9 

show the difference in pixel intensities between original and watermarked, and watermarked and attacked 

images respectively. This difference is 10 times amplified for elaboration purposes. It can be observed from 

figure 8 that in case of no attack, the difference is not severe and easily visible at less sensitive areas like 

edges. On the other hand, the difference in case of the attack (Gaussian noise with �=10) is quite severe. This 

sort of distortion may easily disturb decoders based on the statistical characterization of the DCT coefficients 

across the different channels. This is the main reason that we use two types of feature subsets; in one case, we 

let the ML system exploit the sum of the responses from all the channels, while in the other case, we let it 

exploit the various frequency channels separately as per their corresponding distortion. Figure 10 shows the 

Gaussian attacked watermarked image, where the imperceptibility is affected strongly by the resultant 

distortions.  

Figure 8: Pixel Intensity difference between original and watermarked images 

Figure 9: Pixel Intensity difference between watermarked and attacked watermarked images 

Figure 10: Gaussian noise attacked watermarked Couple Image 

 

 

6.3 Cross Validation based Performance Comparison 

 

In order to carry out comparative study, the average BCR of TD model is also computed. The input dataset is 

divided in the same fashion as it is used for SVM and ANN decoding models. The experimental results are 

given in Table 4. This table shows that in case of TD model, the average BCR of TD model is approximately 

the same  i.e. 0.984 for both self-consistency and cross validation techniques.  

 

Table 4: BCR performance of TD  model using 4-fold cross validation against Gaussian noise attack 

 

The BCR performance of SVM models using the same distribution of input dataset is shown in Table 5. It is 

observed that Poly-SVM attains maximum value of average BCR, i.e. 100 percent accuracy on the training 

dataset for the optimized values of γ = 194 and C = [0.4-2]. On the other hand, the self-consistency performance 

of RBF-SVM and Linear-SVM is nearly the same, i.e. 0.9877 and 0.9853 respectively.  

 

It is also observed from Table 5 that there is consistency in decoding performance of SVM models even for 

novel test dataset. These SVM models have maintained their high performance on both the training and test 

data. However, there is some degradation in the performance of Linear-SVM and RBF-SVM as compared to 

Poly-SVM. Poly-SVM has achieved 100 percent decoding performance by correctly extracting all the 12000 

bits in the test dataset. This is, indeed, a major achievement as far as a distorted watermark is concerned. 

From Table 4 and 5, the order of overall BCR performance of SVM and TD models is as follows; Poly-SVM 

> RBF- SVM > Linear-SVM >TD model.  

Table 6 shows the experimental results of ANN model. Average BCR performance of ANN model is up to 

0.999 for the training dataset exploiting 22 features. However, in case of test data, the performance of ANN 

model degrades up to 0.9746. It is concluded from Table 5 and 6 that average BCR performance of Poly-

SVM and ANN models are approximately the same on the training dataset. However, due to its low 

generalization capability, ANN model could not maintain the same high performance on the test data. 

Whereas, SVM models, especially, Poly-SVM has maintained high performance on both training and test 

dataset. 

 

Table 5: BCR performance of SVM models using 4-fold cross validation against Gaussian noise attack  

Table 6: BCR performance of ANN model using 4-fold cross validation against Gaussian noise attack 

 

The overall performance comparison in terms of bar chart of three decoding models (SVM, ANN and TD) is 

shown in figure 11. The order of performance of decoding models on training data is as follows; Poly-SVM > 



 

ANN > RBF- SVM > Linear-SVM >TD. On the other hand, in case of test data we observe, Poly-SVM > 

Linear-SVM > RBF-SVM > TD > ANN.  

 

Figure 11: BCR performance comparision using 4-fold cross-validation and 22 features 

 

6.4 Self-Consistency based Performance Comparison 
 

The comparison of the three decoding models is also analyzed using self-consistency as shown in figure 12 and 

13. It can be observed from figure 12 that in this case both Poly-SVM, and RBF-SVM have the highest 

performance. The order of performance using self-consistency is as such: Poly-SVM = RBF- SVM >ANN > 

Linear-SVM >TD. Analyzing the performance of ANN, and RBF-SVM on the both self-consistency and cross 

validation, it can be concluded that the developed ANN, and RBF-SVM models are not generalized one like the 

Poly-SVM; achieving high performance both on the self-consistency and cross-validation cases. In context of 

our decoding problem, this advantage of Poly-SVM might be due to its learning capability based on the inner 

product of global data points that are selected from the training data points. However, the performance 

measurement of RBF kernels is based on local Gaussian kernel that might not be suitable for this data.  

 

Figure 12 Self-consistency based BCR performance using different feature subsets 

Figure 13 compares the performance of the different ML decoding models on the various images. This analysis 

is carried out to examine the generalization property as regards the dependency on cover image is concerned. If 

we imagine a continuous change from a relatively smooth image e.g. Lena towards a relatively textured image 

e.g. Baboon, then the behavior of the different decoding schemes could be analyzed through the surface plot. It 

can be easily observed that both Poly-SVM, and RBF-SVM are independent of the cover image. On the other 

hand, the performance of ANN, Linear-SVM, and TD models suffers for textured images, especially Baboon 

image. This is because in highly textured images, the high frequency content is large and it is difficult to survive 

attacks such as Gaussian noise. 

Figure 13 Self-Consistency based Performance Comparison using features extracted from different images 

Figure 14 shows the performance comparison of the various decoding models using different feature subsets. 

Using a single feature, the performance of all the decoding models is approximately the same. However, using 

22 features i.e. exploiting the 22 frequency bands separately, the performance of SVM and ANN models 

improve appreciably. This behavior underpins the fact that nonlinear ML models are able to exploit the high 

dimensional feature space as compared to linear ML model like Linear-SVM. 

Figure 14 Performance Comparison using different feature subsets 

We also have analyzed the performance comparison at different feature subsets by varying image type. Figure 

15 demonstrates that at single feature, the performance of all the models undergoes approximately the same 

decline, as we move from a relatively smooth image towards a relatively textured image. That is using a single 

feature, i.e. collective response of the 22 frequency bands, the models cannot learn the distortion incurred by the 

attack. Consequently, they cannot cope with the increase in the severity of the attack as we move from a 

relatively smooth image to a relatively textured image. On the other hand, figure 16 demonstrates this very fact 

of the ML model being able to cope with severity of attack by learning the distortion occurred to the feature 

space when provided with 22 features. It can be observed that the nonlinear ML models, Poly-SVM,  RBF-SVM, 

and ANN have been able to maintain their performance. Specifically, Poly-SVM,  RBF-SVM give outstanding 

performance achieving BCR up to 1 across all the different types of images. 

Figure 15 Self-Consistency based Performance across increasingly textured images using a single feature 

Figure 16 Self-Consistency based Performance across increasingly textured images using 22 features 

 
6.5 Performance Comparison against JPEG Compression 

In order to analyze the adaptability of the proposed ML decoding system, we change the conceivable attack 

and retrain the ML model accordingly. In this case the attack is JPEG compression (QF=80). The sufficient 

statistics (equation 9) are computed in the same way and the ML model is able to learn the new distortion 

introduced. Consequently it is able to extract the message accurately but blindly (Table 7). The order of 

performance is RBF-SVM >Poly-SVM > ANN >Linear-SVM >  TD. The training time for Poly-SVM is higher 

as compared to RBF-SVM and ANN. 



 

Table 7: Self Consistency based Performance of the decoding models against JPEG Compression Attack  

 
6.6 Performance Comparison against Wiener Attack 

We also analyzed the performance of our adaptive decoding scheme by changing the conceivable attack from 

JPEG compression to Wiener estimation. The ML decoding schemes during their training phase are able to 

learn the novel distortion being introduced. Table 8 shows the performance comparison of the different 

decoding schemes against the Wiener attack. It can be observed from Table 8 that RBF-SVM is able to cope 

with such change in distortion and offers highest performance, achieving BCR=1.0 as compared to a 

BCR=0.8316 for TD model. The order of performance is RBF-SVM >Poly-SVM > ANN >Linear-SVM >  TD. 

Table 8: Self Consistency based Performance of the decoding models against Wiener attack 

6.7 Security Analysis: 
Although in this work, we are mainly emphasizing on the robustness aspects of watermarking schemes, we 

would also like to analyze the security related aspects. The secret key used to generate the spread spectrum 

sequence is very important as for as security aspects are concerned. In order to reduce the chances of security 

leakage, a second key is highly recommended to randomly permute the elements of the matrix of the selected 

DCT coefficients before embedding. This helps in introducing uncertainty about the correspondence of a 

codeword element and the selected DCT coefficients. The same key has to be provided at the extraction stage 

in order to revert the permutation process. In this way, an attacker would have no idea of which coefficients 

are altered corresponding to a codeword element. As for as the trained ML model used at the extraction phase 

is concerned, it can be made public or not according to the intended watermarking application. For the trained 

ML models, unlike correlation based detectors [3], due to their inherent property of transforming the input 

vector to higher dimensional space, it is very difficult for the attacker to gain knowledge about the key by 

analyzing the extraction process. 

 

6.8 Temporal Cost based Performance Comparison 

 
Table 9 shows the comparison between the average training and test times of SVM, ANN and TD models. These 

results are reported for 4000 training data using grid search and 12000 novel data samples respectively. The 

experimental results are obtained using Pentium IV machine (2.4 GHz, 512 Mb RAM). It is observed that both 

training and test time of SVM models are lower than that of ANN model. This might be due to the inherent, but 

efficient learning capability of SVM models. As far as the temporal cost of TD model is concerned, it has only 

the test time of 0.07 second. 

 

Table 9: Comparison in terms of temporal cost between various decoding models 

 

From the above discussion of the experimental results, it is observed that our proposed decoding scheme has 

shown improved performance than that of the TD model. In case of SVM, we are able to decode 100 percent 

accurate message from a distorted watermarked image. This shows that in view of conceivable attacks on a 

watermarked image, which are most common in real world applications of watermarking, it is far better 

intelligently employing a ML technique for learning the distortion introduced by the attack.  

Overall, the SVM based decoding models performs superiorly. However, the parameter optimization of SVM 

has a great impact on both the accuracy as well training time of the decoding model. Once a high performance 

model is trained, in view of the intended attacks, the computational cost is comparable to that of TD model 

during the test phase. Although, we have used 22 frequency bands (7-28 in zigzag order) for watermark 

embedding, the proposed scheme has the potential to be more suitable for effective watermark extraction, if 

ML based techniques are allowed to exploit the effect of attack on the whole 63 frequency bands. In this case, 

a feature selection scheme such as Genetic Algorithm in view of the anticipated attack before the ML based 

decoding approach would be highly desirable. 

7   CONCLUSIONS 

We have been able to validate the exploitation of machine learning concepts for decoding purpose. The 

experimental results have demonstrated that both SVM and ANN decoding models are able to adopt 

according to the hostile environment. Especially, Poly-SVM has shown highest BCR performance. In 

addition, their adaptability characteristics also reduce the risk of the main security concern; unauthorized 

decoding. Our proposed intelligent decoding scheme has effectively extracted bits of the distorted watermark 

and is a generic one—not limited to a specific set of watermarking schemes. The utilization of advanced error 

correction strategies [30-34] in conjunction with the proposed intelligent decoding would be highly desirable, 

especially, in view of a cascade of conceivable attacks on the watermarked image. In the current work, we 



 

have employed our proposed decoding scheme for image watermarking, but this technique may also be 

applied in both audio and video watermarking. Moreover, the proposed technique is easy to implement and 

has strong potential of being utilized in medical image watermarking, like remote diagnosis aid applications 

and telesurgery, which utilizes widely distributed sensitive medical information. In such applications, the 

performance of message recovery could have severe affect on a patient’s life. 
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Table 2:  Parameters of input dataset 

 

Type of Images 

Number of images 

Name of Images 

Image Size 

Message Size 

Number of keys 

Type of Attack 

Severity of attack 

Gray Scale 

5 

Baboon, Lena, Trees, Boat & couple. 

256256 ×   

128 bits 

25 

Gaussian Attack 

σ =10 

 

Table 2: Parameter settings for ANN based decoding model effective against Gaussian noise 

Attack 

 
Neural Network Parameters Selected Values  

1. Input layer neurons 

2. Number of hidden layers 

a. Neurons in 1st hidden layer 

b. Neurons in 2nd  hidden layer 

3. Number neurons in the output layer   

4. Activation function of two hidden layers 

5. Activation function of output layer 

6. Training algorithm 

7. No of epochs 

8. Stopping criterion 

22  

2 

25 

15 

1 

tansig 

purelin 

Levenberg-Marquardt 

30 

0.001avgξ ≤  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Activation functions used in the proposed ANN decoding model 

Function Name Mathematical Form Derivatives 

Pure Linear  xxf =)(  Constant 

Tangent Sigmoid 
2

( )
[1 exp( 2 )] 1

f x
x

=
+ − −

 [ ]'( ) 2 ( ) 1 ( )f x f x f x= −  

 

Table 4: BCR performance of TD  model using 4-fold cross validation against 

Gaussian noise Attack 

Training data 

(bits) 

BCR Performance 

(Self-consistency) 

Test data 

(bits) 

BCR Performance 

(Cross validation) 

4000 0.9830 12000 0.98433 

4000 0.9805 12000 0.98517 

4000 0.98775 12000 0.98275 

4000 0.98475 12000 0.98375 

Avg. BCR 0.984 --- 0.984 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: BCR performance of SVM models using 4-fold cross validation against Gaussian noise Attack 

SVM 

Kernels 
C γ 

Training 

Data 

(bits) 

BCR 
Avg.  

BCR 

Test  

Data 

(bits) 

BCR 
Avg. 

BCR 

 

Linear 

48.503 - 4000 0.9852 

 

0.9853 

12000 0.9855 

 

0.9855 

48.503 - 4000 0.9832 12000 0.98617 

111.43 - 4000 0.9868 12000 0.9850 

111.43 - 4000 0.9860 12000 0.98525 

 

Poly 

[0.4 -2] 194 4000 1.00 

 

1.00 

12000 1.00 

 

1.00 

[0.4 -2] 194 4000 0.9998 12000 1.00 

[0.4 -2] 194 4000 1.00 12000 1.00 

[0.4 -2] 194 4000 1.00 12000 1.00 

 

RBF 

0.75786 5.2768 4000 0.9850 

 

0.9877 

12000 0.98483 

 

0.9840 

1.3195 6.9644 4000 0.9875 12000 0.98475 

1.000 1.7411 4000 0.9868 12000 0.98333 

2.2974 9.1896 4000 0.9915 12000 0.98325 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: BCR performance of ANN model using 4-fold cross validation 

against Gaussian noise Attack 

Training 

Data 

(bits) 

BCR 

Performance 

(Self-

consistency) 

Test 

data 

(bits) 

BCR 

Performance 

(Cross 

validation) 

4000 0.9992 12000 0.9762 

4000 0.9998 12000 0.9727 

4000 0.9998 12000 0.9768 

4000 0.9998 12000 0.9727 

Avg. 

BCR 
0.9997 --- 0.9746 

 

Table 7: Self Consistency based Performance decoding models against JPEG Compression Attack  

Type Of 

Attack 

 Type 

Of 

Attack 

Data 

Size 

(bits) 

 Feature 

Set 

ML 

Models 

Parameters Time 

(sec.) 
BCR 

Hernandez 

Scheme 

(BCR) C γ 

 

 

JPEG 

 

 

QF=80 

 

 

16000 

 

 

22 

 

Linear 

SVM 
2 128 40 0.9266 

 

 

0.9119 

Poly 

SVM 
2 128 6895 0.9942 

RBF  

SVM 
2 128 697 0.9998 

ANN 
Hidden 

layers=3[8,4,2] 
- 160 0.9431 

 



 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9: Comparison in terms of temporal cost between various decoding models against 

Gaussian noise Attack 

Decoding Models 

Training Time Test Time 

Selecting parameters 

for 4000 data samples 
For 12000 data samples 

Linear-SVM 15 min 0.060 sec 

Poly-SVM 19 min 0.072 sec 

RBF-SVM 17 min 0.075 sec 

ANN (30 epochs) 30 min 0.090 sec 

TD model - 0.070 sec 

 

Table 8: Self Consistency based Performance of decoding models against Wiener Attack  

Type 

Of 

Attack 

Intensity 

Of 

Attack 

Data 

Size 

(bits) 

Feature 

Set 

     

ML 

Models 

Parameters Time 

(sec.) 
BCR 

Hernandez 

Scheme 

(BCR) 
C γ 

 

Weiner 

 

 

Window 

size 

=3x 3 

 

 

16000 

 

 

22 

 

Linear 

SVM 
2  49 0.9191 

 

 

0.8316 

Poly 

SVM 
2 1.4 573 0.9490 

RBF  

SVM 
2 16 713 1.0 

ANN 

Hidden 

layers=3

[8,4,2] 

- 284 0.9324 

 



 

 

 

 

 

 

 
 

Figure 2: Distribution of sufficient statistics of the maximum likelihood based decoding system corresponding 

to +/-1 bits; (a) before and (b) after Gaussian Attack (σ =10) 

 

 

 

 

 

 

 

 



 

 
 

Figure 2: Basic block diagram of the proposed ML decoding system 
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Figure 3: BCR performance dependency of RBF-SVM based decoding model on parameters C and γ 
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Figure 4: Watermark extraction 



 

 

 
Figure 5: Original Couple image 

 



 

 

 
Figure 6: Watermarked Couple image 
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Figure 7: Distribution of the watermark for Couple image 



 

 
 

Figure 8: Pixel intensity difference between original and watermarked images 



 

       

  
 

 

Figure 9: Pixel intensity difference between watermarked and attacked watermarked images 



 

 

 
Figure 10: Gaussian noise attacked watermarked Couple image 

 

 
 



 

 

 
 

Figure 11: BCR performance comparision using 4-fold cross-validation and 22 features 



 

 
Figure 12: Self-consistency based BCR performance using different feature subsets 

 

 

 

 

 

 

 

 

 



 

 
Figure 13: Self-Consistency based Performance Comparison using features extracted from different images 
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Figure 14: Performance Comparison using different feature subsets  
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Figure 15: Self-Consistency based Performance across increasingly textured images using a single feature 
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Figure 16: Self-Consistency based Performance across increasingly textured images using 22 features 

 

 

 

 

 

 

 
 


