
A. Majid, A. Khan and Anwar M. Mirza,, “Combination of Support Vector Machines Using Genetic Programming,” in
the International Journal of Hybrid Intelligent Systems (IJHIS), 2006 (to appear).

Combination of Support Vector Machines Using Genetic Programming

Abdul Majid, Asifullah Khan and Anwar M. Mirza

Faculty of Computer Science & Engineering, GIK Institute, Ghulam Ishaq Khan (GIK) Institute of Engi-
neering Science & Technology, Topi-23460, Swabi, PAKISTAN { majid, akhan and mirza}@giki.edu.pk

Abstract: This paper describes the combination of support vector machine (SVM) classi-
fiers using Genetic Programming (GP) for gender classification problem. In our scheme,
individual SVM classifiers are constructed through the learning of different SVM kernel
functions. The predictions of SVM classifiers are then combined using GP to develop Op-
timal Composite Classifier (OCC). In this way, the combined decision space is more in-
formative and discriminant. OCC has shown improved performance than that of optimized
individual SVM classifiers using grid search. Another advantage of our GP combination
scheme is that it automatically incorporates the issues of optimal kernel function and
model selection to achieve high performance classification model. The classification per-
formance is reported by using Receiver Operating Characteristics (ROC) Curve. Experi-
ments are conducted under various feature sets to show that OCC is more informative and
robust as compared to their individual SVM classifiers. Specifically, it attains high margin
of improvement for small feature sets.
Keywords: Support Vector Machines, Optimal Composite Classifiers, Receiver Oper-
ating Characteristics Curves, Area Under the Convex Hull (AUCH), Genetic Program-
ming.

1 Introduction

There is a considerable interest in obtaining useful information from a large volume of
data. Scientists and engineers are turning to computers to find automatic classification
methods to make sense from data. Intelligent classification models are being developed in
new fields of Bioinformatics, Machine Learning, Data Mining and Knowledge Discovery
[20]-[23], [34]. This is the reason why researchers are always in search of high perform-
ance classification models. Improvements in such models might improve the overall qual-
ity of the system [1]. The main objective of a classification model is to achieve good gen-
eralization performance on new test samples. For example, in a disease diagnosis system,
practitioners are interested in high performance classification models.
Support vector machine is developed for binary classification problems. It is a margin-
based classifier with good generalization capabilities. SVMs are frequently used in real
world applications of pattern classification and regression [2]. In recent years, SVMs are
being widely used in various image processing and classification tasks [3]-[4]. SVM based
discriminant approach is preferred in high dimension image space. SVM classification

mailto:mirza%7D@giki.edu.pk

models could be developed by using different kernel functions. We have chosen SVM
models for combination due to their high discrimination power and low generalization er-
ror.
Optimization of SVM models is an active area of research. In the optimization of SVM
models, two main issues are encountered; selection of kernel function and its associated
parameters (model selection) for the problem at hand [5]-[11]. In kernel selection, SVM
are tested with various kernels for higher classification, while keeping minimum training
error [4]. In model selection, mostly grid search based iterative methods are applied in or-
der to optimize the parameters within the range of [8]. However, such search
methods are based on trial and error. They become computationally inefficient when the
number of parameters is more than two [5]. Optimization of SVM models is performed by
linear combination of SVM kernel functions [18]. However, this combination model uses
class conditional probabilities and nearest neighbor techniques. So far, no intelligent com-
bination method, based on SVM kernel functions, is developed. However, research in the
development of such methods is in progress.

15 15[10 10]− −

Currently, the combination of multiple classifiers has attained a considerable attention for
higher classification, in which the prediction accuracy is improved by parameters tuning.
A combination of classifiers is expected to be more accurate than a single classifier [13].
In such systems, individual classifiers and their diversity could give us suitable combina-
tion of classifiers [14]-[15] with the deficiency of one classifier can be replaced by the ad-
vantage of other. However, there are many challenges how to generate the component
classifiers and how to combine the results provided by these component classifiers in a
best possible way. These problems are normally addressed independently through cover-
age optimization and decision optimization techniques [16].
There exist well-known combination techniques such as Bagging, Boosting and Adaboost
[38] that manipulate the input training data for training diverse types of component classi-
fiers. In Bagging a small set of training data is randomly picked to generate a component
classifier for an ensemble [40]. Their output predictions are then combined by giving
equal weights. In Boosting, first weak classifiers are created with accuracy greater than
0.5. Next, the distribution of the training data is changed. This distribution is based on the
performance of previously trained component classifiers. The output of each component
classifier is then weighted sum to give higher accuracy. Adaboost, a small variant of
Boosting, allow adding weak classifiers until some desired low training error has been ob-
tained. In Adaboost, each training example receives a weight that determines its chance to
be selected in training set for a subsequent component classifier.
Our GP-based combination technique is different from these combination techniques.
These techniques improve the classification performance by iteratively retraining the
component classifiers with a subset of most informative training data. During training,
each time the trained component classifier produces a single point on ROC curve (TPR
and FPR coordinates). The value of decision threshold T is fixed and re-sampling of the

2

training data is performed repeatedly. However, in this work, we want to evaluate the per-
formance of composite classifiers against the whole threshold range of [0-1]. In our GP-
based technique, effective combinations of fixed numeric classifiers are automatically cre-
ated during GP evolution process. Their performance is then evaluated in each generation.
There is no need to retrain them iteratively.
Another problem in the conventional combination methods is the complexity involved in
finding an optimal search space. Usually, the possible solutions of combination functions
are very large. To find out the optimal composite model by manually adjusting the pa-
rameters might be a tedious work. Moreover, there is a lack of general combination rules.
Under such circumstances, GP-based combination technique may offer a good alternative
approach. In such optimization problems, there are good chances for this technique to per-
form better. GP-based technique may be used successfully to address. GP has potential to
develop target based complex numerical functions. Previously, GP has been used in com-
bining different classification models like, kNN, Artificial Neural Networks, Decision
Trees and Naïve Bayes [19]-[26]. In the current work, we address two main issues through
the following contributions:

• We genetically combine individual SVM classifiers to construct an optimal decision
space using the decision space of individual classifiers. Different kernel functions of
SVMs can represent the complex feature space more accurately.

• Our GP-based intelligent method has eliminated the requirement of finding an optimal
SVM model. This happens implicitly in the GP evolution mechanism. GP automati-
cally incorporates the values of suitable constants in addition to variables terminals.

In our technique, first, individual SVM classifiers are tuned over [0-1] range of decision
thresholds T. GP is then used to evolve appropriate combination functions using AUCH of
ROC curve as a fitness function. This work is an extension of our previous works [25],
[26] and [39]. Here, we are extending the applicability of GP method to combine SVM
classifiers.
The remaining paper is organized as follows: In Section 2, we briefly describe SVMs. In
Section 3, the proposed methodology and architecture of a classification system is ex-
plained. Implementation details are given in Section 4. Results and discussion are pre-
sented in Section 5. Finally, conclusions are given in Section 6.

2 SVM Classifiers

SVM performs pattern classification between two classes by finding a decision surface
that has maximum distance to the closest points in the training set [2]. These points are
called support vectors. SVM addresses the classification problem as a quadratic optimiza-
tion problem by placing an upper bound on the margin between classes. The training prin-
ciple of SVM is to find an optimal linear hyperplane such that the classification error for
new test samples is minimized. For a linearly separable data, hyperplane is determined by

3

maximizing the distance between the support vectors. Consider training

pairs

n

here(,), wi ix y N
ix R∈ and {1, 1 }iy ∈ − , the decision surface is defined as:

 ()
1

.
n

T
i i i

i
f x y x xα

=
b= +∑ (1)

where the coefficient 0iα > is the Langrange multiplier in an optimization problem. A

vector ix that corresponds to 0iα > is called a support vector. ()f x is independent of the

dimension of the feature space and the sign of ()f x gives the membership class of x . In
case of linear SVM, the kernel function is simply the dot product of two points in the input
space.
In order to find an optimal hyperplane for non-separable patterns, the solution of the fol-
lowing optimization problem is sought [2].

1

1(,)
2

N
T

i
i

w w w Cξ ξ
=

Φ = + ∑ (2)

subject to the condition ()() 1 , 0.T
i i i iy w x b ξ ξΦ + ≥ − ≥

where is the penalty parameter of the error term 0C >
1

N

i
i
ξ

=
∑ and ()xΦ is nonlinear map-

ping. The weight vector minimizes the cost function term . For nonlinear data, we
have to map the data from the low dimension N to higher dimension M through

w Tw w
()xΦ such

that : ,N MR F M NΦ → >> . Each point ()xΦ in the new space is subject to Mercer’s
theorem. Different kernel functions are defined as: (,) (). ()i j i jK x x x x=Φ Φ . We can con-

struct the nonlinear decision surface ()f x in terms of 0iα > and kernel func-

tion (,)i jK x x as:

1 1

() (,) () ()
S SN N

i i i i i i
i i

f x y K x x b y x xα α
= =

= + = Φ ⋅Φ∑ ∑ b+ (3)

where, sN is the number of support vectors.

In SVMs, there are two types of kernel functions, i.e. local (Gaussian) kernels and global
(linear, polynomial, sigmoidal) kernels. The measurement of local kernels is based on a
distance function while the performance of global kernels depends on the dot product of
data samples. Linear, polynomials and radial basis functions are mathematically defined
as:

(,) .T
i j i jK x x x x= (Linear kernel with parameter) C

2
(,) exp()i j i jK x x x xγ= − − (RBF with Gaussian kernel parameters ,Cγ)

(,) [,]d
i j i jK x x x x rγ= < > + (Polynomials kernel with parameters , , andr d Cγ)

4

Linear, RBF and polynomial kernels have one, two, and four adjustable parameters re-
spectively. All these kernels share one common cost parameter which represents the
constraint violation of the data point occurring on the wrong side of the SVM boundary.
The parameter

,C

γ in the RBF shows the width of Gaussian functions. In order to obtain
optimal values of these parameters, there is no general rule about the selection of grid
range and step size. In the present work to select the optimal parameters of kernel func-
tions, grid search method described in [8] is used.

3 Proposed Methodology

We have taken gender classification problem as a test case. ROC curve is a general per-
formance measure of classifiers [30]. During GP evolution AUCH of ROC curve is taken
as a fitness function [20]-[26]. In the proposed scheme, a combination of classifiers is car-
ried out using the concept of stacking the predictions of classifiers to form a new feature
space [12], [22]-[26]. Suppose, there are m kernel functions . The dataset S is

partitioned into three non-overlapping but equal training and testing sets,
i.e. , where = training data1, = testing data1 and

1, , mK KL

1 2 3{ }X X X∩ ∩ =∅ 1X 2X 3X = testing

data2. Each data-label example is represented byis (,)i i is x y= . A set of individual clas-

sifiers are constructed by training kernel functions on training dataset , i.e. 1, , mC CL 1X

1(),j j iC K x= 1 1,ix X∈ 1, 2, ,i n= L and 1, 2, ,j m= L . A new feature set (meta-

data) is constructed by stacking the predictions of SVM classifiers under the

second testing dataset as:

1ˆ ˆ(, ,)m
i iy yL

2X 2ˆ (),j
i j iy C x= 2 2here ,iw x X∈ 1, 2, ,j m∀ = L . GP meta-

learning process is based on the new training data space of . 1ˆ ˆ(, ,),m
i iy yL 1, ,i n∀ = L

GP optimally combine the predictions of individual classifiers to obtain OCC.

The predictions of individual classifiers are used as unary functions in the GP tree. These
unary functions are mixed during GP crossover and mutation operations. In order to de-
velop OCC various GP runs are carried out. The main modules of our scheme are shown
with double dashed boxes in Figure 1. A brief description of each module is given as fol-
lows:

1ˆ ˆ(, ,)m
i iy yL

3.1 Normalization of face databases

Various databases are combined to form a generalized and unbiased database for gender
classification. Different face images are collected from the standard databases of YALE
[41], CVL [42], ORL [43] and Stanford medical student [44]. In this way, a more general
face image database is formed. Images are taken under various conditions of illumination
with different head orientations. In the normalization stage, CSU Face Identification
Evaluation System [33] is used to convert all images in the uniform state. Images within

5

the databases are of different sizes taken under various conditions. CSU system includes
standardized image pre-processing software to study the unbiased performance of classifi-
ers. In order to convert each image of size 103 by 150 into a normalized form, this system
performs various image preprocessing tasks. First, human faces are aligned according to
the chosen eye coordinates. Then, an elliptical mask is formed and images are cropped
such that the face from forehead to chin and cheek to cheek is visible. At last, the histo-
gram of the unmasked part of the image is equalized. A sample of a few images, their
normalized form, as well as the block diagram for processing images is shown in Figure
2(a-b).

Input Facial image database

Facial image normalization

Poly SVMLinear SVM RBF SVM

Combining classifiers by GP tree

GP evolved numerical
classifiers testing

Testing
data1

AUCH calculation
module

Fitness
values

Fitness
evaluation

Termination
criteria = ?

Save the best OCC

OCC testing

yes

No

Data formation
(training data1 for SVM kernels)

Output performance

GP module

Initial population
generation

Stacking the predictions

Feature selection using Simba algo.

Testing
data1

Testing
data2

Input Facial image database

Facial image normalization

Poly SVMLinear SVM RBF SVM

Combining classifiers by GP tree

GP evolved numerical
classifiers testing

Testing
data1

AUCH calculation
module

Fitness
values

Fitness
evaluation

Termination
criteria = ?

Save the best OCC

OCC testing

yes

No

Data formation
(training data1 for SVM kernels)

Output performance

GP module

Initial population
generation

Stacking the predictions

Feature selection using Simba algo.

Testing
data1

Testing
data2

Figure 1: Architecture of the proposed classification system

6

Figure 2(a): Face alignment system with different stages

Figure 2(b): Sample of a few input faces and processed faces

3.2 Features selection

Feature selection is the task of reducing dimensions by selecting a small set of features.
Feature selection reduces the feature space, which in turn speeds up the classification
process. There exist many image pixels based feature selection techniques. However, we
are using Iterative Search Margin Based Algorithm (SIMBA). Details about this algorithm
are available in [32]. This algorithm along with 1-NN classifier combines large margin so
that optimal image pixel may be selected. A stochastic gradient ascent is used over the
evaluation function in order to maximize this function. For a training set S having
sample vectors

()e W
x , each of dimension N and a weight vector , the feature evaluation

function is defined as:
W

()e W

 \() ()W
S x

x S
e W xμ

∈

=∑ (4)

where µ represent the hypothesis margin of an instance x . The gradient of on set S
is computed as:

()e W

 () () ()2 2() ()() 1()
2 () ()

i i i i
ii

i w w

x nearmiss x x nearhit xe We W w
w x nearmiss x x nearhit x

⎛ ⎞− −∂ ⎜ ⎟Δ = = −
⎜ ⎟∂ − −⎝ ⎠

 (5)

where indicate the nearest point to1, 2, , .i N= L Nearhit x() x having the same label as

7

that of x , while indicate the nearest point to()nearmiss x x with different label. A
weight vector is obtained as:W W W= + Δ .
In order to analyze the performance of classifiers for various feature sets, different values
of thresholds are used for this weight vector After picking the desired image pixels,
three separate datasets; training data1, testing data1 and testing data2 are formed. In the
original database S, we have selected 300 male and 300 female images. Thus, each part of
this dataset contains 100 male and 100 female images. This data is then used in various
training and testing stages as shown in Figure 1.

.W

3.3 Evaluation of Classifiers: ROC curve

In the present work, the performance of classifiers are measured in terms of ROC curves.
This measure is also used in GP fitness function. ROC curve is a general performance
measure of a classifier. It summarizes the performance of classifier under different operat-
ing conditions for a particular problem. When there is no prior knowledge of the true ratio
of misclassification costs for a classification system, ROC curve is a reasonable perform-
ance measure [28]. This ROC curve and its area rank the classifier decision values [27].
TPR (true positive rate) represents the number of correct positive cases divided by the to-
tal number of positive cases. FPR (false positive rate), on the other hand, is the number of
negative cases predicted as positive cases divided by the total number of negative cases.
FPR (X-axis) and TPR (Y-axis) values represent the specificity and sensitivity of the clas-
sification system respectively. In order to plot ROC curve, the predicted values of a classi-
fier are scaled in the range of [0-1]. The values of TPR and FPR of the entire test samples
are obtained by applying threshold T in the range of [0-1]. If the output of classifier is
greater than the threshold T, then input sample is allocated to one class (male), else to the
other class (female). ROC curve is then plotted between TPR and FPR and then AUCH of
ROC curve is determined. AUCH of a classifier’s ROC is the Maximum Realizable ROC
[29]. It gives a scalar value representing the overall performance of a classifier. This per-
formance measure has been used in various classification models [20]-[26]. A classifier is
an optimal one, if AUCH of its ROC is near to one.

3.4 GP-based combination of SVM classifiers

In the combination of classifiers, first suitable component classifiers are selected. They
may be trained on the same or different data. In the homogenous combination, only one
type of component classifier is used to develop a composite classifier. In this way, OCC is
a function of only one classifier (), () ()L P

8

Rf C f C or f C . On the other hand, in heteroge-
neous combination, the composite classifier is a function of two or more component clas-
sifiers i.e. (, ,)L P Rf C C C [26]. These component classifiers may be trained on the same or

different data. We have studied homogenous and heterogeneous combination of linear
classifiers [31], statistical classifiers [26], kNN classifiers [19], and SVM classifiers [39].

In the present work, we are using heterogeneous combination of SVM classifiers trained
using different SVM kernel functions. OCC trained using this scheme may usually have a
better chance of delivering high performance. The procedure adopted is as such: first indi-
vidual SVM classifiers are trained using training data1. Their predictions are extracted
using the testing data1. Such predictions of individual classifiers are stacked in three ar-
rays (L, P and R), which would be used as unary functions within the GP tree. In order to
plot ROC curve, the decision threshold T is used as a variable terminal in GP tree as
shown in figure 3. During GP evolution, combined decision space of individual SVM
classifiers is developed. Finally, the performance of OCC and individual SVM classifiers
is analyzed in terms of AUCH of ROC curve using testing data2. The main steps of our
GP module are as follows:

3.4.1 GP module

GP is a type of Evolutionary Algorithms that are based on the mechanism of natural selec-
tion. In context of classification, GP-based technique comes under the category of stochas-
tic methods, in which randomness plays a crucial role in searching and learning [1]. We
represent a classifier as a candidate solution with a tree like-data structure. Initially, a
population of individuals is created randomly as a possible solution space. Next, score of
each classifier is obtained for a certain classification task. In this way, the fitness of each
classifier is calculated. The survival of fittest is carried out by retaining the best classifi-
ers. The rest are deleted and replaced by their offspring. These retained classifiers and
their offspring are used for the next generation. During genetic evolution, each new gen-
eration has a slightly higher average score. In this way, the solution space is refined and
converges to the optimal/near optimal solution [34]. We have used GPLAB software [35]
to develop OCC. All the necessary settings are given in Table 1. In order to represent pos-
sible solutions in the form of a complex numerical function, suitable functions, terminals,
and fitness criteria are defined. Different functions of our GP module are as follows:
GP function set: GP Function set is a collection of various mathematical functions avail-
able in the GP module. In GP run, we have used simple functions, including four binary
floating arithmetic operators (+, -, *, and protected division), LOG, EXP, SIN and COS.
Our functions set also consist of application specific logical statements e.g. greater than
(gt) and less than (lt).
GP terminals: In the development of OCC, we have selected suitable random variables
and constants. Threshold T is taken as a variable terminal. Random numbers in the range
[0-1] are generated from uniform distribution. They are used as constant terminals in GP
tree.
Population initialization method: We have generated an initial popoulation by using
ramped half and half method. In this methood, first, equal number of individuals are
initialized for each tree depth, while the number of depths are considered from two to the
initial tree depth value. Now for each tree depth level, half of the individuals are

9

initialized using Grow method and the other half individuals using Full method [35].
Fitness function: The performance of individuals in GP population is assessed by using
AUCH of ROC curve as a fitness function. A fitness function grades each individual. It
provides feedback to the GP module representing the fitness of individuals. Figure 1
shows how this function is used to score each individual. Higher fitness score of an indi-
vidual indicates higher performance in terms of AUCH of ROC curve.

Table 1: GP Parameters Setting

Objective
To evolve a optimum combined classifier with
maximum AUCH

Function Set: +, -, *, protected division, gt,le, log, abs, sin and cos

Special Function:
SVM classifier prediction (L, P, R) are used as unary
functions

Terminal Set: Varaible threshhold T and random constants both are in
the range of [0 - 1]

Fitness : AUCH of ROC curve
Expected offspring: rank85
Selection: Generational

Wrapper: Positive if 0, else negative ≥

Population & Generations: 300 & 80 respectively
Initial Tree Depth Limit: 6
Initial population: Ramped half and half
GP Operators prob: Variable ratio of crossover & mutation is used
Sampling: Tournament
Survival mechanism: Keep best individuals
Real max. tree level: 28

Fig. 3: Combination of SVM classifiers represented as unary functions in GP trees

GP operators used: We have used replication, mutation, and crossover operators for pro-

10

ducing new generation. Replication is the copying of an individual into the next genera-
tion without any change. In mutation, a small part of an individual’s genome is changed.
This small random change often brings diversity in the solution space. Crossover creates
an offspring by exchanging genetic material between two individual parents. It tries to
mimic recombination and sexual reproduction. Crossover helps in converging onto an op-
timal/near optimal solution. In GP run, we have used variable ratio of crossover and muta-
tion.
Termination criterion: The simulation is stopped if one of the two conditions is encoun-
tered first;

• The fitness score exceeds 0.999.

• Number of generations reaches the maximum limit.

3.4.2 Testing phase

At the end of a GP run, the best expression of a GP individual is obtained. Its performance
is then evaluated using testing data2.

4 Implementation Details

The experimental results are obtained using Pentium IV machine (1.6 GHz, 256MB
RAM). OSU-SVM toolbox [36] is used in MATLAB 6.1 environment. In the first study,
the performance of OCC is analyzed with individual SVM classifiers by priori fixing the
values of kernel parameters, i.e. cost parameter 1,C = kernel parameter 1,γ = coeffi-
cient and degree In the 20r = 3.d = nd study, the optimal values of these parameters are
adjusted by using grid search. Suitable grid range and step size is estimated for SVM ker-
nels. PolySVM has four adjustable parameters; , , andd r Cγ . However, to simplify prob-
lem, the values of degree and coefficient are fixed at 3, 1d r= = . The optimum values

of and Cγ are then selected. In case of PolySVM, a grid range of with step

size and with step size

4 5[2 , 2]C −=

0.2CΔ = 7 2[2 , 2] γ −= 0.2 γΔ = are used. In case of RbfSVM, the

range of grid and step size of andC γ are selected as: C = 15 10[2 , 2],− CΔ = 0.2 and γ =
10 15[2 , 2] ,− γΔ = . The optimal value of parameter for linear kernel has been ob-

tained by adjusting the grid range of with

0.2 C
1 5[2 , 2]C −= 0.2CΔ = .

Efforts have also been made to minimize the problem of over-fitting in the training of both
individual SVM and composite classification models. Appropriate size of training and
testing data is selected in the holdout method. Tuning parameters of GP evolution are also
selected carefully.

11

5 Results and Discussion

The following experiments have been conducted to study the behavior of OCC. Compara-
tive performance analysis of OCC is also carried out with that of the individual SVM clas-
sifiers.

5.1 Analysis of accuracy versus complexity

We investigate the behavior of the best GP individuals developed for 1000 features set.
Figure 4(a) shows how the fitness of best individual increases in one GP run. Figures 4(b-
c) show the complexity of the best individuals expressed in terms of tree depth and no. of
nodes. It is observed that in the search of better predictions, size of the best GP individual
increases after each generation. As a result, the best genome’s total number of nodes in-
creases and its average tree depth becomes very large. We can observe from Figure 4(d),
the large increasing behavior of median, average, and maximum fitness of the best indi-
vidual.
During crossover and mutation operations, more and more constructive blocks build up
that minimize the destruction of useful building blocks [34]. As a result, the size of GP
program grows after each generation. This might be due to bloating phenomenon of GP
evolution [37]. Due to this phenomenon, many branches within the best GP program gen-
erally do not contribute in improving its performance. However, such branches increase
the size of GP program.

0 10 20 30 40 50 60 70 80 90
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Generations

M
ax

.fi
tn

es
s

an
d

st
d.

de
v.

Max.Fitness
Std.dev

Figure 4(a): The maximum fitness of the best individuals in one GP run (007.0=σ).

12

Figure 4(b)-(c): (Left) No. of nodes versus generations; (Right) Tree depth versus genera-
tions of the best individuals in one GP run.

0 10 20 30 40 50 60 70 80 90
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Generations

M
ax

. M
ed

ia
n

an
d

av
g.

 fi
tn

es
s

Max Fitness
Median fitness
Avg fitness

Figure 4(d): The behavior of maximum, median, and average fitness of the best individuals.

5.2 Polynomial SVM for different feature sets

 In order to study the effect of increasing the size of feature sets, on the performance of
individual SVM classifiers, with PolySVM is selected as a test case. Its performance in
terms of ROC curves for different feature sets is shown in Figure 5. This Figure shows the
improvement in ROC curves with the increase of feature sets, e.g. PolySVM-10 (trained
on 10 features) has AUCH = 0.8831 and PolySVM-1000 has AUCH = 0.9575. AUCH of
ROC curve gives the overall performance of the classifier in a summarized form and it is
not necessary to have high TPR values for all FPR values. Practically, initial high values
of TPR and low FPR are more crucial for significant overall performance. For example,
PolySVM-100 has overall lower values of AUCH, even though, it has high values of TPR
for than that of PolySVM-1000. FPR 0.4 ≥

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FPR

TP
R

polyFS10, AUCH = 0.8831
polyFS100, AUCH = 0.9325
polyFS500, AUCH = 0.9451
polyFS1000, AUCH = 0.9575

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FPR

TP
R

polyFS10, AUCH = 0.8831
polyFS100, AUCH = 0.9325
polyFS500, AUCH = 0.9451
polyFS1000, AUCH = 0.9575

 Figure 5: ROC curves of PolySVM. (For simplicity, in this figure and in the next figures,
only those points that recline on the convex hull of the ROC curve are shown.)

5.3 Performance comparison of OCC with individual SVM classifiers

This experiment is carried out to analyze the performance of OCC and SVM classifiers.
Figures 6(a-d) show AUCHs of ROC curves obtained for various feature sets. These fig-
ures demonstrate that with the provision of more information, TPR increases, while FPR
decreases. Our OCC has outperformed individual SVM classifiers. This improvement in
ROC curves is due to low values of FPR and high values of TPR. These values help the
points shifting towards upper left corner and thus providing better decision. Such kind of
behavior is desirable in those applications where the cost of FPR is too important. For ex-
ample, a weak patient cannot afford high FPR. Minor damage of healthy tissues may be a
matter of life and death. On the other hand, if attempts are made to reduce FPR by simply
adjusting decision threshold T, the risk of false negative cases might rise in a poor predic-
tion model. Such kind of prediction models, specifically in medical applications, might
cause high misclassification cost in various fatal diseases such as lungs, liver, and breast
cancer [31].
Bar chart in Figure 7 shows the comparison of experimental results in a more summarized
form for various feature sets. It is observed that linear SVM has the lowest AUCH values.
Due to the nonlinearity in the feature space, Linear SVM is unable to learn this space ef-
fectively. However, with the increase of feature sets, it improves AUCH performance. To
promote diversity, usually diverse types of component classifiers are used in the develop-
ment of composite classifiers [14]. As a result, linear classifier is included to enhance di-
versity in the decision space.

14

As far as the performances of PolySVM and RbfSVM classifier are concerned, they have
shown relatively equal performance. Both are capable of constructing a nonlinear decision
boundary [2]. However, the performance of our OCC is superior to both these individual
SVM classifiers. During GP evolution process, composite classifiers might have extracted
useful information from the decision boundaries of constituent kernels. Another advantage
gained is that composite classifiers have shown higher performance, specifically for small
feature sets of sizes 5, 10, and 20. The general order of performance of classifiers is:

()AUCH AUCH AUCH AUCHOCC PolySVM RbfSVM LinSVM> ≅ >

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

TPR

FP
R

linSVM
polySVM
rbfSVM
OCC

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

TP
R linSVM

polySVM
rbfSVM
OCC

Figure 6(a): ROC for 10 features Figure 6(b): ROC for 100 features

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

TP
R

linSVM
polySVM
rbfSVM
OCC

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

TP
R

linSVM
polySM
rbfSVM
OCC

Figure 6(c): ROC for 500 features Figure 6(d): ROC for 1000 features

15

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5 10 20 50 100 250 500 1000
Features

A
U

C
H

LinearSVM PolySVM RbfSVM OCC

 Figure 7: AUCHs of ROC curves of different classifiers

5.4 Overall classifier performance

It is observed from Figure 7 that AUCH of classifiers is enhanced with the increase of fea-
tures. Further analysis is carried out to study the performance of classifier in terms of
AUCH of AUCHs [26]. This measure has shown more compactness by incorporating the
performance of a classifier with respect to the variation in the feature sets. The procedure
adopted is as follows: in the first step, different AUCH values of a classifier for different
feature sets are obtained. Graph is plotted between AUCH versus different feature sets as
shown in Figure 8. Finally, AUCH of these AUCH curves is computed. In the second step,
average AUCH of each classifier is also calculated. The difference between AUCH of
AUCH and average AUCH of each classifier is determined. The value of difference repre-
sents the variation in classifier’s performance with respect to the size of feature set.
Higher difference indicates lower robustness of a classifier.
Bar chart in the Figure 9 shows the overall performance of classifiers in terms of AUCH
of AUCHs, average AUCH and their percentile difference. It is observed that linear SVM
has the lowest AUCH of AUCHs value of 0.9205 and the largest percentile difference of
7.45 (0.9205-0.846). The other two component classifiers have comparatively the same
AUCH of AUCH values and relatively small percentile difference. However, OCC has the
largest AUCH of AUCHs value of 0.988 and the smallest percentile difference of 2.9
(0.988-0.96). These results illustrate two main advantages of OCC, i.e. higher optimality
and robustness against the variation in feature sets.

16

10 50 100 250 500 1000
0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
H

No.of Features

linSVM
polySVM
rbfSVM
OCC

10 50 100 250 500 1000
0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
H

No.of Features

linSVM
polySVM
rbfSVM
OCC

Figure 8: AUCH versus no. of features

0.82

0.85

0.88

0.91

0.94

0.97

1

Classifiers

C
la

ss
ifi

er
s

pe
rf

or
m

an
ce

AUCH of AUCH AVG. AUCH

AUCH of AUCH 0.9205 0.9603 0.9586 0.988

AVG. AUCH 0.846 0.909 0.91 0.96

LinearSVM PolySVM RbfSVM OCC
0.82

0.85

0.88

0.91

0.94

0.97

1

Classifiers

C
la

ss
ifi

er
s

pe
rf

or
m

an
ce

AUCH of AUCH AVG. AUCH

AUCH of AUCH 0.9205 0.9603 0.9586 0.988

AVG. AUCH 0.846 0.909 0.91 0.96

LinearSVM PolySVM RbfSVM OCC

Figure 9: Overall performance of classifiers

5.5 Performance comparison of OCC with optimized SVM classifiers

The quantitative results in the Table 2 and Figure 10 highlight the improved performance
exhibited by optimized SVM classifiers. Even though, the component SVM classifiers of
OCC are not optimized, still OCC gives a margin of improvement as compared with opti-
mized SVM classifiers. Table 2 shows that the optimum values of and Cγ depend on the
type of kernel function and the size of the feature set. It is observed that the optimal values
of and Cγ varies randomly with the increase of features. This table also indicates an im-
provement for SVM classifiers after optimization. For example, the performance of linear
SVM is improved but not appreciably. SVM classifier based on RBF kernel is more accu-
rate than linear SVM. It is also more efficient than polynomial kernel due to the lesser
number of parameters to be adjusted.

17

Table 2: Performance comparison of OCC with Optimized SVM classifiers
opt_LinSVM Opt_PolySVM Opt_RbfSVM OCC Classifiers

/Feature
sets

AUCH Optimal
C

AUCH Optimal
γ C

AUCH Optimal
γ C

AUCH

5 0.6779 1.1 0.7655 0. 25 16 0.8587 8.0 32 0.8900
10 0.7896 1.2 0.8864 2.0 0. 06 0.9196 4.0 2.0 0.9344
20 0.8167 4.6 0.9071 0.25 5.65 0.9319 2.0 4.0 0.9482
50 0.8726 3.8 0.9609 0.35 22.62 0.9603 0.25 128 0.9629
100 0.9007 5.1 0.9689 0.17 32.01 0.9699 0.12 128 0.9705
250 0.927 4.4 0.9701 0.71 2.02 0.9728 2.01 4.02 0.9766
500 0.9263 4.8 0.9730 2.82 0.08 0.9785 8.1 2.2 0.9871
1000 0.9329 4.8 0.9754 2.82 0.176 0.9784 2.1 4.2 0.9947
5000 0.9529 5.1 0.9816 3.1 0.21 0.9846 2.0 8.0 0.9926

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5 10 20 50 100 250 500 1000
Features

A
U

C
H

opt_LinSVM opt_PolySVM opt_RbfSVM OCC

Figure 10: AUCHs of ROC curves of different classifiers

Figures 11 to 13 show the effect of varying and Cγ on the performance of different ker-
nels for 100 features. It is observed that as compared to parameter , parameterC γ has
more significant effect on the performance of SVM kernels. Figure 11 shows the behavior
of RbfSVM with respect to and Cγ parameters. Its highest AUCH value is 0.9699
at 0.12γ = and . In Figure 12, the highest AUCH value of PolySVM is 0.9689
at

 C=128
0.17 and C=32.γ = Figure 13 indicate the highest AUCH value of Linear SVM is

0.9007 at . 5.1C =

18

Figure 11: AUCH surface of RBF kernel parameterized by and Cγ for 100 features

Figure 12: AUCH surface of polynomial kernel parameterized by and Cγ for 100 fea-
tures at 3, coefficient 1d r = =

19

Figure 13: AUCH versus parameter C of Linear kernel for 100 features

5.6 Temporal cost of Optimized SVM classifiers and OCC

Table 3 shows comparison between the training and testing times of the optimized SVM
classifiers and OCC. It is observed that temporal cost increases with the increase of size of
feature set. In case of optimizing kernel parameters through grid search, the temporal cost
depends on the grid range and its step size. In this table the training and testing time is re-
ported for 200 data samples. Overall temporal cost of the classification models is:

_ _ _OCC opt PolySVM opt RbfSVM opt LinSVM> > >

The optimized Linear SVM takes less training and testing time but its classification per-
formance is poor. Our OCC takes comparatively more training and testing time but it
keeps better classification performance. OCC training/testing time depends on various fac-
tors, like, training data size, length of feature set, maximum tree depth, tree nodes and the
size of search space.

Table 3: Comparison between the training and testing time (in sec.)

Classifiers
/Feature sets

Opt_LinSVM opt_PolySVM Opt_RbfSVM OCC

 Train Test Train Test Train Test Train Test

5 2.781 0.0050 201.02 0.0160 2278.4 0.0470 3612.4 1.470
10 3.001 0.0051 217.80 0.0310 1343.4 0.0580 4343.7 2.580
50 3.105 0.0051 220.11 0.0150 1864.1 0.0560 5643.1 2.860
100 4.328 0.0051 271.81 0.0320 5491.4 0.0780 9021.4 2.070
500 18.42 0.0151 1263.2 0.2500 19984.1 0.4780 40402.1 3.480
1000 36.71 0.0151 2393.1 0.500 40231.2 0.7651 57611.2 3.751

20

5.7 OCC behavior in a partially different feature space

 OCC is trained on a particular feature space and we study its behavior on a partially dif-
ferent feature space. In table 4, OCC-10 is trained for 10 feature sets. However, its per-
formance is analyzed on the same feature space as well as on other feature spaces. This
table shows that AUCH value of OCC-10 is maximum (0.934) for 10 features as com-
pared to other partially different feature spaces. Thus, as expected, improved behavior of
OCC along the diagonal path is observed . In each column, from top to bottom, there is a
gradual increase in the values of AUCH. This behavior of OCC resembles a normal classi-
fier, i.e. more information would result in higher performance. However, OCC perform
randomly along horizontal. This might be due to the diverse nature of the GP search space
in each run. In each run, the optimal solution may be partially/entirely different from the
previous GP solution.

Table 4: OCC performance for various feature spaces

Classifiers
/Feature sets

OCC-10 OCC-20 OCC-50 OCC-100 OCC-500 OCC-1000 OCC-5000

FS = 10 0.9344 0.8701 0.8902 0.8631 0.8776 0.7999 0.8751

FS = 20 0.8901 0.9482 0.8920 0.8842 0.9002 0.8179 0.902

FS = 50 0.9001 0.9061 0.9629 0.9111 0.9032 0.8431 0.9276

FS = 100 0.9130 0.9190 0.9381 0.9705 0.9316 0.8930 0.9313

FS = 500 0.9370 0.9470 0.9412 0.9481 0.9871 0.9084 0.9458

FS=1000 0.9451 0.9500 0.9581 0.9472 0.9532 0.9947 0.9537

FS=5000 0.9571 0.9591 0.9591 0.9651 0.9426 0.9262 0.9826

5.8 OCC behavior in an entirely different feature space

 In this case, we analyze the performance of OCC on entirely different feature spaces but
of equal size. In the first experiment, the features in the testing dataset2 are sorted and the
last 250 most distinctive features are selected in ascending order. These selected features
are divided into five separate but equal feature sets. Each feature set contain 50 features
and the last feature set contains the most discriminant features. OCC is trained for the last
feature space. Same steps are carried out in the second experiment to construct a feature
space of 100 feature sets. Their experimental results are given in bar charts of Figures 14
and 15. It is observed from these figures that OCC performs well for the last feature set.
Because, OCC was trained on this specific feature space, on the other feature spaces, the
performance of OCC is equal to that of PolySVM or RbfSVM. This is because that SVM
classifiers are tested and trained on their own feature spaces, but this is not the case for
OCC. Even then, the performance of OCC is not less than the best of its component classi-
fiers. These figures also illustrate continuous degradation in the performance of classifiers.
This may be due to the gradual decrease in the discrimination power of SIMBA feature se-

21

lection algorithm [32]. These figures show that the last feature spaces are the most dis-
criminant.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1st-50 2nd-50 3rd-50 4th-50 5th-50

Features

A
U

C
H

LinearSVM PolySVM RbfSVM OCC

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1st-100 2nd-100 3rd-100 4th-100 5th-100

Features

A
U

C
H

LinearSVM PolySVM RbfSVM OCC

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1st-50 2nd-50 3rd-50 4th-50 5th-50

Features

A
U

C
H

LinearSVM PolySVM RbfSVM OCC

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1st-100 2nd-100 3rd-100 4th-100 5th-100

Features

A
U

C
H

LinearSVM PolySVM RbfSVM OCC

Figure 14: (left) and 15: (right) show the performance of classifiers for 50 and 100 feature
sets, respectively.
An exemplary numerical expression classifier, in prefix form, developed by GP for 1000
features is given as:

f(L,R,P)=plus(le(sin(P),le(plus(sin(L),sin(sin(P))),abs(minus(L,abs(minus(sin(sin(L)),0.12826)))))),p
lus(minus(R,0.15),plus(plus(sin(plus(le(0.047,abs(le(plus(R,plus(times(kozadivide(P,plus(sin(abs(
L)),plus(cos(L),sin(sin(R))))),0.51),P)),le(sin(sin(L)),abs(minus(sin(L),plus(sin(plus(le(0.047,abs(mi
nus(sin(sin(L)),0.12))),sin(L))),minus(sin(L),abs(minus(sin(sin(L)),0.12)))))))))),sin(abs(le(plus(0.04
7,sin(absus(minus(R,0.15),plus(plus(sin(plus(le(0.047,abs(le(plus(R,plus(times(kozadivide(P,plus(
sin(abs(L)),plus(cos(L),sin(sin(R))))),0.51),P)),le(sin(sin(L)),abs(minus(sin(L),plus(sin(plus(le(0.047
,abs(minus(sin(sin(L)),0.12))),sin(L))),minus(sin(L),abs(minus(sin(sin(L)),0.12)))))))))),(mnus(R,0.1
5),pmnus(L,plus(sin(plus(le(0.04,abs(minus(sin(abs(minus(sin(L),plus(sin(plus(le(sin(L),abs(minus
(sin(sin(L)),0.12))),sin(L))),minus(sin(L),abs(minus(sin(sin(L)),0.12))))))),0.12))),sin(R))),R))))),le(si
n(sin(abs(minus(sin(L),plus)))))))).
This expression shows that OCC function depends on predicted arrays (L, R, P) of the
kernels, random constants, arithmetic operators and other special operators.

6 Conclusions

Our GP-based technique of developing composite classifier has effectively extracted use-
ful information from individual SVM classifiers. This gain in the performance of OCC is
achieved through the genetic combination of SVM classifiers without resorting to the
manual exhaustive grid search. From experimental results, it is also concluded that the
performance of OCC is better than the optimized SVM classifiers. During GP evolution
process, OCC learns the most favorable distribution within the data space. Using the pro-
posed combination technique, OCC can be tuned at any binary classification problem. Our
investigations [25]-[26], [31] and [39] have explored the GP potential to combine the de-
cision information from its constituent classifiers. In future, we intend to analyze the per-
formance of GP combination method on medical data sets and other performance evalua-

22

tion datasets.

Acknowledgements

This work is sponsored by the Ministry of Science and Technology and Higher Education
Commission, Government of Pakistan under the scholarship grants No. 17-6 (0246) /Sch /
2001 and No. 17-6 (176) /Sch / 2001.

References

[1] Duda R. O., Hart P. E., and Stork D. G. (2001), “Pattern Classification,” John Wiley &
Sons, Inc., New York, 2nd edition.

[2] Vapnik V. (1998), “Statistical Learning Theory,” New York: John Wiley & Sons Inc.
[3] Rajpoot K., and Rajpoot N. (2004), “SVM Optimization for Hyperspectral Colon Tis-

sue Cell Classification,” LNCS3217, Springer-Verlag, 829-837.
[4] Moghaddam B. and Yang M. H. (2002), “Learning Gender with support faces,” IEEE

Transaction on Pattern Analysis and Machine Learning, Vol. 24, No. 5, 707–711 .
[5] Chapelle O., Vapnik V., Bousquet O., and Mukherjee S. (2002), “Choosing Multiple

Parameters for Support Vector Machines,” Journal of Machine Learning, Vol. 46, No.
1, 131-159.

[6] Yu-Yen Ou, Chien-Yu Chen, Shien-Ching Hwang, and Yen-Jen Oyang (Oct. 2003),
“Expediting Model Selection for Support Vector Machines Based on Data Reduction,”
Proceedings of IEEE International Conference on Systems, Man and Cybernetics,
Washington D.C, USA.

[7] Runarsson T.P. and Sigurdsson S. (2004), “Asynchronous Parallel Evolutionary Model
Selection for Support Vector Machines,” Neural Information Processing - Letters and
Reviews, Vol. 3, No. 3, 59-68.

[8] Hsu C.W., Chang C.C., and Lin C.J. (2003), “A practical guide to support vector ma-
chines,” Technical report, Department of Computer Science & Information Engineer-
ing, National Taiwan University.

[9] Guermeur Y., Maumy M. and Sur F. (2005), “Model selection for multi-class SVMs,”
ASMDA'05, Brest, France, 507-516.

[10] Weston J., Mukherjee S., Chapelle O., Pontil M., Poggio T., and Vapnik V. (2000),
“Feature selection for SVMs,” Advances in Neural Information Processing Systems
(NIPS), Vol. 13, MIT Press, 668-674.

[11] Staelin C. (2002), “Parameter selection for support vector machines,” Technical re-
port, HP Labs, Israel.

[12] Dzeroski S. and Zenko B. (2004), “Is combining classifiers with stacking better than
selecting the best one? ” Journal of Machine Learning, 54(3):255–273.

[13] Kittler J. & Roli F. (2001), “Multiple Classifier Systems,” Proceedings of 2nd Inter-
national Workshop, MCS2001, Cambridge, UK, 369-377.

23

http://www.nip-lr.info/
http://www.nip-lr.info/

[14] Brown G., Wyatt J., Harris R. and Yao X. (2005), “Diversity creation methods: A
survey and categorization,” Journal of Information Fusion, 6(1), 5–20.

[15] Ruta D. and Gabrys B. (2001), “Analysis of the correlation between majority voting
error and the diversity measures, in multiple classifier systems,” Proceedings of 4th In-
ternational Symposium on Soft Computing, Paisley, UK, Paper No. 1824-025.

[16] Ho T. K. (2001), “Data complexity analysis for classifier combination, Multiple Clas-
sifier Systems,” Proceedings of 2nd International Workshop, MCS2001, Cambridge,
UK, 53-67.

[17] Roli F., and Giacinto G. (2002), “Hybrid Methods in Pattern Recognition,” Chapter
design of Multiple Classifier Systems, World Scientific Publishing, Vol. 36, 199-226.

[18] Moguerza1 J. M., Muñoz A., and Diego I. M. D. (2004), “Improving Support Vector
Classification via the Combination of Multiple Sources of Information,” Multiple Clas-
sifier Systems I, Springer-Verlag, Vol. 3138.

[19] Majid A., Khan A. and Mirza A. M., (2005) “Combination of Nearest Neighborhood
Classifiers Using Genetic Programming”, Proceedings of International IEEE Confer-
ence (INMIC2005), Karachi, Pakistan.

[20] Langdon W. B. and Barrett S. J. (2004), “Genetic Programming in Data Mining for
Drug Discovery,” Evolutionary Computing in Data Mining, Physica Verlag, 211-235.

 [21] Langdon W. B. and Barrett S. J., and Buxton. B. F. (2002), “Combining Decision
Trees and Neural Networks for Drug Discovery in Genetic Programming,” Proceed-
ings of the 5th European Conference, EuroGP'2002, 60-70, Springer-Verlag.

[22] Langdon W. B. and Barrett S. J., and Buxton B. F. (2002), “Genetic Programming for
Combining Neural Networks for Drug Discovery,” Soft Computing and Industry Re-
cent Applications, Springer-Verlag, 597-608.

[23] Buxton B. F., Langdon W. B. and Barrett S. J. (2001), “Data Fusion by Intelligent
Classifier Combination,” Measurement and Control, Vol. 34, No. 8, 229-234.

[24] Langdon W. B. and Buxton B. F (2001), “Genetic programming for combining classi-
fiers,” Proceedings of GECCO2001, Morgan Kaufmann, 66-73.

[25] Majid A., Khan A., and Mirza A. M. (2004), “Improving Performance of Nearest
Neighborhood Classifier Using Genetic Programming,” Proceedings. of International
conference on machine learning and its applications ICMLA’04, Louisville, KY, USA.

[26] Khan A., Majid A., and Mirza A. M. (2004), “Combination and Optimization of
Classifiers in Gender Classification Using Genetic Programming,” Journal of Knowl-
edge-Based Intelligent Engineering Systems (KES), Vol. 8, 1-11.

[27] Agarwal S., Graepel T., Herbrich R., Peled S. H., and Roth D. (2005), “Generaliza-
tion bounds for the area under the ROC curve,” Journal of Machine Learning Re-
search, Vol. 6, 393-425.

 [28] Fawcett T. (2004), “ROC graphs: Notes and practical considerations for research-
ers,” Technical report, HP Laboratories, MS 1143, Mill Road, Palo Alto, CA 94304,
USA.

24

http://evonet.dcs.napier.ac.uk/eurogp2002/
http://www.cs.ucl.ac.uk/staff/W.Langdon/mc/
http://www.cs.ucl.ac.uk/staff/W.Langdon/mc/
http://www.instmc.org.uk/pubs/measandcontrol.php

[29] Langdon W. B. and Buxton B. F. (2001), “Genetic Programming for Improved Re-
ceiver Operating Characteristics,” Multiple Classifier System, LNCS2096, Springer-
Verlag, 2-4.

 [30] Scott M. J. J., Niranjan M., and Prager R. W. (1998), “Realizable classifiers: Improv-
ing operating performance on variable cost problems,” Proceedings of Ninth British
Machine Vision Conference, Vol. 1, 304-315.

[31] Majid. A. (Dec. 2005), “Optimization and combination of classifiers using Genetic
Programming,” PhD Thesis, Faculty of Computer Science, GIK institute, Pakistan.

 [32] Bachrach R.G., Navot A., and Tishby N. (2004), “Margin based feature selection -
theory and algorithms,” Proceedings of the 21'st international conference on Machine
Learning (ICML’04), ACM Press, Vol. 69, 43-49.

[33] Beveridge R. (2004), “Evaluation of face recognition algorithms version 5.0,” web
site. http://www.cs.colostate.edu/evalfacerec/algorithms5.html.

[34] Banzhaf W., Nordin P., Keller R. E. and Francone F. D. (1998), “Genetic Program-
ming: An Introduction: On the Automatic Evolution of Computer Programs and Its
Applications,” Morgan Kaufmann, Inc. San Francisco, California.

[35] http://www.gplab.sourceforge.net/download.html
[36] http://prdownloads.sourceforge.net/svm/osu-svm-3.0.zip
[37] Langdon W. B. (2000), “Size fair and homologous tree genetic programming cross-

overs”, Genetic Programming and Evolvable Machines, Vol.1, No.1-2, 95-119.
[38] Freund Y. and Schapire R. E, (1996) “Experiments with a new boosting algorithm”,

Proceedings of 13th International Conference on Machine Learning, Morgan Kauf-
mann, 148-156.

[39] Majid A., Khan A. and Mirza Anwar M. (2005), “Intelligent Combination of Kernels
Information for Improved Classification”, Proceedings of International Conference on
Machine Learning and its Applications ICMLA’05, Los Angeles, USA.

[40] Bauer E. and Kohavi R., (1999) “An empirical comparison of voting classification
algorithms: Bagging, boosting and variants,” Journal of Machine Learning, 24(3):173–
202.

[41] http://cvc.yale.edu/projects/yalefaces/yalefaces.html
[42] http://www.lrv.fri.uni-lj.si/facedb.html
[43] http://www.uk.research.att.com/pub/data/att_faces.tar.Z
[44] http://ise.stanford.edu/class/ee368/projects2001/dropbox/project16/appendix.html

25

http://prdownloads.sourceforge.net/svm/osu-svm-3.0.zip
http://ise.stanford.edu/class/ee368/projects2001/dropbox/project16/appendix.html

	1 Introduction
	2 SVM Classifiers
	3 Proposed Methodology
	3.1 Normalization of face databases
	3.2 Features selection
	3.3 Evaluation of Classifiers: ROC curve
	3.4 GP-based combination of SVM classifiers
	3.4.1 GP module
	3.4.2 Testing phase

	4 Implementation Details
	5 Results and Discussion
	5.1 Analysis of accuracy versus complexity
	5.2 Polynomial SVM for different feature sets
	5.3 Performance comparison of OCC with individual SVM classifiers
	5.4 Overall classifier performance
	5.5 Performance comparison of OCC with optimized SVM classifiers
	5.6 Temporal cost of Optimized SVM classifiers and OCC
	5.7 OCC behavior in a partially different feature space
	5.8 OCC behavior in an entirely different feature space

	6 Conclusions
	Acknowledgements
	References

