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Abstract: This paper describes the combination of support vector machine (SVM) classi-
fiers using Genetic Programming (GP) for gender classification problem.  In our scheme, 
individual SVM classifiers are constructed through the learning of different SVM kernel 
functions. The predictions of SVM classifiers are then combined using GP to develop Op-
timal Composite Classifier (OCC). In this way, the combined decision space is more in-
formative and discriminant. OCC has shown improved performance than that of optimized 
individual SVM classifiers using grid search. Another advantage of our GP combination 
scheme is that it automatically incorporates the issues of optimal kernel function and 
model selection to achieve high performance classification model. The classification per-
formance is reported by using Receiver Operating Characteristics (ROC) Curve. Experi-
ments are conducted under various feature sets to show that OCC is more informative and 
robust as compared to their individual SVM classifiers. Specifically, it attains high margin 
of improvement for small feature sets. 
Keywords: Support Vector Machines, Optimal Composite Classifiers, Receiver Oper-
ating Characteristics Curves, Area Under the Convex Hull (AUCH), Genetic Program-
ming.  

1 Introduction 

There is a considerable interest in obtaining useful information from a large volume of 
data.  Scientists and engineers are turning to computers to find automatic classification 
methods to make sense from data. Intelligent classification models are being developed in 
new fields of Bioinformatics, Machine Learning, Data Mining and Knowledge Discovery 
[20]-[23], [34]. This is the reason why researchers are always in search of high perform-
ance classification models. Improvements in such models might improve the overall qual-
ity of the system [1]. The main objective of a classification model is to achieve good gen-
eralization performance on new test samples. For example, in a disease diagnosis system, 
practitioners are interested in high performance classification models. 
Support vector machine is developed for binary classification problems. It is a margin-
based classifier with good generalization capabilities. SVMs are frequently used in real 
world applications of pattern classification and regression [2]. In recent years, SVMs are 
being widely used in various image processing and classification tasks [3]-[4]. SVM based 
discriminant approach is preferred in high dimension image space. SVM classification 
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models could be developed by using different kernel functions. We have chosen SVM 
models for combination due to their high discrimination power and low generalization er-
ror.  
Optimization of SVM models is an active area of research. In the optimization of SVM 
models, two main issues are encountered; selection of kernel function and its associated 
parameters (model selection) for the problem at hand [5]-[11]. In kernel selection, SVM 
are tested with various kernels for higher classification, while keeping minimum training 
error [4]. In model selection, mostly grid search based iterative methods are applied in or-
der to optimize the parameters within the range of  [8]. However, such search 
methods are based on trial and error. They become computationally inefficient when the 
number of parameters is more than two [5]. Optimization of SVM models is performed by 
linear combination of SVM kernel functions [18]. However, this combination model uses 
class conditional probabilities and nearest neighbor techniques. So far, no intelligent com-
bination method, based on SVM kernel functions, is developed. However, research in the 
development of such methods is in progress. 

15 15[10 10 ]− −

Currently, the combination of multiple classifiers has attained a considerable attention for 
higher classification, in which the prediction accuracy is improved by parameters tuning. 
A combination of classifiers is expected to be more accurate than a single classifier [13]. 
In such systems, individual classifiers and their diversity could give us suitable combina-
tion of classifiers [14]-[15] with the deficiency of one classifier can be replaced by the ad-
vantage of other. However, there are many challenges how to generate the component 
classifiers and how to combine the results provided by these component classifiers in a 
best possible way. These problems are normally addressed independently through cover-
age optimization and decision optimization techniques [16].  
There exist well-known combination techniques such as Bagging, Boosting and Adaboost 
[38] that manipulate the input training data for training diverse types of component classi-
fiers. In Bagging a small set of training data is randomly picked to generate a component 
classifier for an ensemble [40]. Their output predictions are then combined by giving 
equal weights. In Boosting, first weak classifiers are created with accuracy greater than 
0.5. Next, the distribution of the training data is changed. This distribution is based on the 
performance of previously trained component classifiers. The output of each component 
classifier is then weighted sum to give higher accuracy. Adaboost, a small variant of 
Boosting, allow adding weak classifiers until some desired low training error has been ob-
tained. In Adaboost, each training example receives a weight that determines its chance to 
be selected in training set for a subsequent component classifier.  
Our GP-based combination technique is different from these combination techniques. 
These techniques improve the classification performance by iteratively retraining the 
component classifiers with a subset of most informative training data. During training, 
each time the trained component classifier produces a single point on ROC curve (TPR 
and FPR coordinates). The value of decision threshold T is fixed and re-sampling of the 
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training data is performed repeatedly. However, in this work, we want to evaluate the per-
formance of composite classifiers against the whole threshold range of [0-1]. In our GP-
based technique, effective combinations of fixed numeric classifiers are automatically cre-
ated during GP evolution process. Their performance is then evaluated in each generation. 
There is no need to retrain them iteratively.  
Another problem in the conventional combination methods is the complexity involved in 
finding an optimal search space. Usually, the possible solutions of combination functions 
are very large. To find out the optimal composite model by manually adjusting the pa-
rameters might be a tedious work. Moreover, there is a lack of general combination rules. 
Under such circumstances, GP-based combination technique may offer a good alternative 
approach. In such optimization problems, there are good chances for this technique to per-
form better. GP-based technique may be used successfully to address. GP has potential to 
develop target based complex numerical functions. Previously, GP has been used in com-
bining different classification models like, kNN, Artificial Neural Networks, Decision 
Trees and Naïve Bayes [19]-[26]. In the current work, we address two main issues through 
the following contributions: 

• We genetically combine individual SVM classifiers to construct an optimal decision 
space using the decision space of individual classifiers. Different kernel functions of 
SVMs can represent the complex feature space more accurately. 

• Our GP-based intelligent method has eliminated the requirement of finding an optimal 
SVM model. This happens implicitly in the GP evolution mechanism. GP automati-
cally incorporates the values of suitable constants in addition to variables terminals. 

In our technique, first, individual SVM classifiers are tuned over [0-1] range of decision 
thresholds T. GP is then used to evolve appropriate combination functions using AUCH of 
ROC curve as a fitness function. This work is an extension of our previous works [25], 
[26] and [39]. Here, we are extending the applicability of GP method to combine SVM 
classifiers.  
The remaining paper is organized as follows: In Section 2, we briefly describe SVMs. In 
Section 3, the proposed methodology and architecture of a classification system is ex-
plained. Implementation details are given in Section 4. Results and discussion are pre-
sented in Section 5. Finally, conclusions are given in Section 6.  

2 SVM Classifiers  

SVM performs pattern classification between two classes by finding a decision surface 
that has maximum distance to the closest points in the training set [2]. These points are 
called support vectors. SVM addresses the classification problem as a quadratic optimiza-
tion problem by placing an upper bound on the margin between classes. The training prin-
ciple of SVM is to find an optimal linear hyperplane such that the classification error for 
new test samples is minimized. For a linearly separable data, hyperplane is determined by 
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maximizing the distance between the support vectors. Consider training 
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where the coefficient 0iα >  is the Langrange multiplier in  an optimization problem. A 

vector ix that corresponds to 0iα > is called a support vector. ( )f x is independent of the 

dimension of the feature space and the sign of ( )f x gives the membership class of x . In 
case of linear SVM, the kernel function is simply the dot product of two points in the input 
space.  
In order to find an optimal hyperplane for non-separable patterns, the solution of the fol-
lowing optimization problem is sought [2].  
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that : ,N MR F M NΦ → >> . Each point ( )xΦ  in the new space is subject to Mercer’s 
theorem. Different kernel functions are defined as: ( , ) ( ). ( )i j i jK x x x x=Φ Φ . We can con-

struct the nonlinear decision surface ( )f x  in terms of 0iα > and kernel func-

tion ( , )i jK x x  as:  
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where, sN is the number of support vectors.  

In SVMs, there are two types of kernel functions, i.e. local (Gaussian) kernels and global 
(linear, polynomial, sigmoidal) kernels. The measurement of local kernels is based on a 
distance function while the performance of global kernels depends on the dot product of 
data samples. Linear, polynomials and radial basis functions are mathematically defined 
as:  

( , ) .T
i j i jK x x x x= (Linear kernel with parameter ) C

2
( , ) exp( )i j i jK x x x xγ= − − (RBF with Gaussian kernel parameters ,Cγ )  

( , ) [ , ]d
i j i jK x x x x rγ= < > + (Polynomials kernel with parameters , , andr d Cγ ) 
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Linear, RBF and polynomial kernels have one, two, and four adjustable parameters re-
spectively. All these kernels share one common cost parameter which represents the 
constraint violation of the data point occurring on the wrong side of the SVM boundary. 
The parameter

,C

γ in the RBF shows the width of Gaussian functions. In order to obtain 
optimal values of these parameters, there is no general rule about the selection of grid 
range and step size. In the present work to select the optimal parameters of kernel func-
tions, grid search method described in [8] is used.  

3 Proposed Methodology 

We have taken gender classification problem as a test case. ROC curve is a general per-
formance measure of classifiers [30]. During GP evolution AUCH of ROC curve is taken 
as a fitness function [20]-[26]. In the proposed scheme, a combination of classifiers is car-
ried out using the concept of stacking the predictions of classifiers to form a new feature 
space [12], [22]-[26]. Suppose, there are m kernel functions . The dataset S is 

partitioned into three non-overlapping but equal training and testing sets, 
i.e. , where = training data1, = testing data1 and 

1, , mK KL

1 2 3{ }X X X∩ ∩ =∅ 1X 2X 3X = testing 

data2. Each data-label example is represented byis ( , )i i is x y= . A set of individual clas-

sifiers are constructed by training kernel functions on training dataset , i.e. 1, , mC CL 1X

1( ),j j iC K x= 1 1,ix X∈ 1, 2, ,i n= L and 1, 2, ,j m= L . A new feature set (meta-

data) is constructed by stacking the predictions of SVM classifiers under the 

second testing dataset  as: 

1ˆ ˆ( , , )m
i iy yL

2X 2ˆ ( ),j
i j iy C x= 2 2here ,iw x X∈ 1, 2, ,j m∀ = L . GP meta-

learning process is based on the new training data space of  . 1ˆ ˆ( , , ),m
i iy yL 1, ,i n∀ = L

GP optimally combine the predictions of individual classifiers to obtain OCC. 

The predictions of individual classifiers are used as unary functions in the GP tree. These 
unary functions are mixed during GP crossover and mutation operations. In order to de-
velop OCC various GP runs are carried out. The main modules of our scheme are shown 
with double dashed boxes in Figure 1. A brief description of each module is given as fol-
lows: 

1ˆ ˆ( , , )m
i iy yL

3.1 Normalization of face databases  

Various databases are combined to form a generalized and unbiased database for gender 
classification. Different face images are collected from the standard databases of YALE 
[41], CVL [42], ORL [43] and Stanford medical student [44]. In this way, a more general 
face image database is formed. Images are taken under various conditions of illumination 
with different head orientations. In the normalization stage, CSU Face Identification 
Evaluation System [33] is used to convert all images in the uniform state. Images within 

 
 

5



the databases are of different sizes taken under various conditions. CSU system includes 
standardized image pre-processing software to study the unbiased performance of classifi-
ers. In order to convert each image of size 103 by 150 into a normalized form, this system 
performs various image preprocessing tasks. First, human faces are aligned according to 
the chosen eye coordinates. Then, an elliptical mask is formed and images are cropped 
such that the face from forehead to chin and cheek to cheek is visible. At last, the histo-
gram of the unmasked part of the image is equalized. A sample of a few images, their 
normalized form, as well as the block diagram for processing images is shown in Figure 
2(a-b).  
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Figure 1: Architecture of the proposed classification system  
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Figure 2(a): Face alignment system with different stages 

 

Figure 2(b): Sample of a few input faces and processed faces 

3.2 Features selection 

Feature selection is the task of reducing dimensions by selecting a small set of features. 
Feature selection reduces the feature space, which in turn speeds up the classification 
process. There exist many image pixels based feature selection techniques. However, we 
are using Iterative Search Margin Based Algorithm (SIMBA). Details about this algorithm 
are available in [32]. This algorithm along with 1-NN classifier combines large margin so 
that optimal image pixel may be selected. A stochastic gradient ascent is used over the 
evaluation function in order to maximize this function. For a training set S having 
sample vectors

( )e W
x , each of dimension N and a weight vector , the feature evaluation 

function is defined as:  
W

( )e W

   \( ) ( )W
S x

x S
e W xμ

∈

=∑  (4) 

where µ represent the hypothesis margin of an instance x . The gradient of on set S 
is computed as: 

( )e W

 ( ) ( ) ( )2 2( ) ( )( ) 1( )
2 ( ) ( )

i i i i
ii

i w w

x nearmiss x x nearhit xe We W w
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where indicate the nearest point to1, 2, , .i N= L Nearhit x( ) x having the same label as 
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that of x , while  indicate the nearest point to( )nearmiss x x with different label. A 
weight vector is obtained as:W W W= + Δ .  
In order to analyze the performance of classifiers for various feature sets, different values 
of thresholds are used for this weight vector  After picking the desired image pixels, 
three separate datasets; training data1, testing data1 and testing data2 are formed. In the 
original database S, we have selected 300 male and 300 female images. Thus, each part of 
this dataset contains 100 male and 100 female images. This data is then used in various 
training and testing stages as shown in Figure 1.  

.W

3.3  Evaluation of Classifiers: ROC curve  

In the present work, the performance of classifiers are measured in terms of ROC curves. 
This measure is also used in GP fitness function. ROC curve is a general performance 
measure of a classifier. It summarizes the performance of classifier under different operat-
ing conditions for a particular problem. When there is no prior knowledge of the true ratio 
of misclassification costs for a classification system, ROC curve is a reasonable perform-
ance measure [28]. This ROC curve and its area rank the classifier decision values [27].  
TPR (true positive rate) represents the number of correct positive cases divided by the to-
tal number of positive cases. FPR (false positive rate), on the other hand, is the number of 
negative cases predicted as positive cases divided by the total number of negative cases. 
FPR (X-axis) and TPR (Y-axis) values represent the specificity and sensitivity of the clas-
sification system respectively. In order to plot ROC curve, the predicted values of a classi-
fier are scaled in the range of [0-1]. The values of TPR and FPR of the entire test samples 
are obtained by applying threshold T in the range of [0-1]. If the output of classifier is 
greater than the threshold T, then input sample is allocated to one class (male), else to the 
other class (female). ROC curve is then plotted between TPR and FPR and then AUCH of 
ROC curve is determined. AUCH of a classifier’s ROC is the Maximum Realizable ROC 
[29]. It gives a scalar value representing the overall performance of a classifier. This per-
formance measure has been used in various classification models [20]-[26]. A classifier is 
an optimal one, if AUCH of its ROC is near to one. 

3.4 GP-based combination of SVM classifiers 

In the combination of classifiers, first suitable component classifiers are selected. They 
may be trained on the same or different data. In the homogenous combination, only one 
type of component classifier is used to develop a composite classifier. In this way, OCC is 
a function of only one classifier ( ), ( ) ( )L P

 
 

8

Rf C f C or f C . On the other hand, in heteroge-
neous combination, the composite classifier is a function of two or more component clas-
sifiers i.e. ( , , )L P Rf C C C [26]. These component classifiers may be trained on the same or 

different data. We have studied homogenous and heterogeneous combination of linear 
classifiers [31], statistical classifiers [26], kNN classifiers [19], and SVM classifiers [39].  



In the present work, we are using heterogeneous combination of SVM classifiers trained 
using different SVM kernel functions. OCC trained using this scheme may usually have a 
better chance of delivering high performance. The procedure adopted is as such: first indi-
vidual SVM classifiers are trained using training data1. Their predictions are extracted 
using the testing data1. Such predictions of individual classifiers are stacked in three ar-
rays (L, P and R), which would be used as unary functions within the GP tree. In order to 
plot ROC curve, the decision threshold T is used as a variable terminal in GP tree as 
shown in figure 3. During GP evolution, combined decision space of individual SVM 
classifiers is developed. Finally, the performance of OCC and individual SVM classifiers 
is analyzed in terms of AUCH of ROC curve using testing data2. The main steps of our 
GP module are as follows: 

3.4.1 GP module 

GP is a type of Evolutionary Algorithms that are based on the mechanism of natural selec-
tion. In context of classification, GP-based technique comes under the category of stochas-
tic methods, in which randomness plays a crucial role in searching and learning [1]. We 
represent a classifier as a candidate solution with a tree like-data structure. Initially, a 
population of individuals is created randomly as a possible solution space. Next, score of 
each classifier is obtained for a certain classification task. In this way, the fitness of each 
classifier is calculated. The survival of fittest is carried out by retaining the best classifi-
ers. The rest are deleted and replaced by their offspring. These retained classifiers and 
their offspring are used for the next generation. During genetic evolution, each new gen-
eration has a slightly higher average score. In this way, the solution space is refined and 
converges to the optimal/near optimal solution [34]. We have used GPLAB software [35] 
to develop OCC. All the necessary settings are given in Table 1. In order to represent pos-
sible solutions in the form of a complex numerical function, suitable functions, terminals, 
and fitness criteria are defined. Different functions of our GP module are as follows: 
GP function set: GP Function set is a collection of various mathematical functions avail-
able in the GP module. In GP run, we have used simple functions, including four binary 
floating arithmetic operators (+, -, *, and protected division), LOG, EXP, SIN and COS. 
Our functions set also consist of application specific logical statements e.g. greater than 
(gt) and less than (lt). 
GP terminals: In the development of OCC, we have selected suitable random variables 
and constants. Threshold T is taken as a variable terminal. Random numbers in the range 
[0-1] are generated from uniform distribution. They are used as constant terminals in GP 
tree.  
Population initialization method: We have generated an initial popoulation by using 
ramped half and half method. In this methood, first, equal number of individuals are 
initialized for each tree depth, while the number of depths are considered from two to the 
initial tree depth value. Now for each tree depth level, half of the individuals are 
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initialized using Grow method and the other half individuals using Full method [35]. 
Fitness function: The performance of individuals in GP population is assessed by using 
AUCH of ROC curve as a fitness function. A fitness function grades each individual. It 
provides feedback to the GP module representing the fitness of individuals. Figure 1 
shows how this function is used to score each individual. Higher fitness score of an indi-
vidual indicates higher performance in terms of AUCH of ROC curve. 

Table 1: GP Parameters Setting 

Objective 
To evolve a optimum combined classifier with 
maximum AUCH 

Function Set: +, -, *, protected division, gt,le, log, abs, sin and  cos 

Special Function: 
SVM classifier prediction ( L, P, R ) are used as unary 
functions 

Terminal Set: Varaible threshhold T and  random constants both are in 
the range of [0 - 1] 

Fitness : AUCH of ROC curve 
Expected offspring: rank85 
Selection: Generational 

Wrapper: Positive if 0, else negative ≥

Population & Generations: 300 & 80 respectively 
Initial Tree Depth Limit: 6 
Initial population: Ramped half and half 
GP Operators prob: Variable ratio of crossover & mutation is used 
Sampling: Tournament 
Survival  mechanism: Keep best individuals 
Real max. tree level: 28 

 

Fig. 3: Combination of SVM classifiers represented as unary functions in GP trees 

GP operators used: We have used replication, mutation, and crossover operators for pro-
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ducing new generation. Replication is the copying of an individual into the next genera-
tion without any change. In mutation, a small part of an individual’s genome is changed. 
This small random change often brings diversity in the solution space. Crossover creates 
an offspring by exchanging genetic material between two individual parents. It tries to 
mimic recombination and sexual reproduction. Crossover helps in converging onto an op-
timal/near optimal solution. In GP run, we have used variable ratio of crossover and muta-
tion. 
Termination criterion: The simulation is stopped if one of the two conditions is encoun-
tered first; 

• The fitness score exceeds 0.999. 

• Number of generations reaches the maximum limit. 

3.4.2 Testing phase  

At the end of a GP run, the best expression of a GP individual is obtained. Its performance 
is then evaluated using testing data2.  

4 Implementation Details 

The experimental results are obtained using Pentium IV machine (1.6 GHz, 256MB 
RAM). OSU-SVM toolbox [36] is used in MATLAB 6.1 environment. In the first study, 
the performance of OCC is analyzed with individual SVM classifiers by priori fixing the 
values of kernel parameters, i.e. cost parameter 1,C = kernel parameter 1,γ = coeffi-
cient and degree In the 20r = 3.d = nd study, the optimal values of these parameters are 
adjusted by using grid search. Suitable grid range and step size is estimated for SVM ker-
nels. PolySVM has four adjustable parameters; , , andd r Cγ . However, to simplify prob-
lem, the values of degree and coefficient are fixed at 3,  1d r= = . The optimum values 

of and Cγ are then selected. In case of PolySVM, a grid range of with step 

size and with step size 

4 5[2 , 2 ]C −=

0.2CΔ = 7 2[2 , 2 ] γ −= 0.2 γΔ = are used. In case of RbfSVM, the 

range of grid and step size of andC γ are selected as: C = 15 10[2 , 2 ],− CΔ = 0.2 and γ =  
10 15[2 , 2 ] ,−  γΔ =  . The optimal value of parameter for linear kernel has been ob-

tained by adjusting the grid range of  with

0.2 C
1 5[2 , 2 ]C −= 0.2CΔ = . 

Efforts have also been made to minimize the problem of over-fitting in the training of both 
individual SVM and composite classification models. Appropriate size of training and 
testing data is selected in the holdout method. Tuning parameters of GP evolution are also 
selected carefully. 
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5 Results and Discussion 

The following experiments have been conducted to study the behavior of OCC. Compara-
tive performance analysis of OCC is also carried out with that of the individual SVM clas-
sifiers.   

5.1 Analysis of accuracy versus complexity 

We investigate the behavior of the best GP individuals developed for 1000 features set. 
Figure 4(a) shows how the fitness of best individual increases in one GP run. Figures 4(b-
c) show the complexity of the best individuals expressed in terms of tree depth and no. of 
nodes. It is observed that in the search of better predictions, size of the best GP individual 
increases after each generation. As a result, the best genome’s total number of nodes in-
creases and its average tree depth becomes very large. We can observe from Figure 4(d), 
the large increasing behavior of median, average, and maximum fitness of the best indi-
vidual.  
During crossover and mutation operations, more and more constructive blocks build up 
that minimize the destruction of useful building blocks [34]. As a result, the size of GP 
program grows after each generation. This might be due to bloating phenomenon of GP 
evolution [37]. Due to this phenomenon, many branches within the best GP program gen-
erally do not contribute in improving its performance. However, such branches increase 
the size of GP program.  
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Figure 4(a): The maximum fitness of the best individuals in one GP run ( 007.0=σ ). 

 
 

12



 

Figure 4(b)-(c): (Left) No. of nodes versus generations; (Right) Tree depth versus genera-
tions of the best individuals in one GP run.        
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Figure 4(d): The behavior of maximum, median, and average fitness of the best individuals. 

5.2 Polynomial SVM for different feature sets 

 In order to study the effect of increasing the size of feature sets, on the performance of 
individual SVM classifiers, with PolySVM is selected as a test case. Its performance in 
terms of ROC curves for different feature sets is shown in Figure 5. This Figure shows the 
improvement in ROC curves with the increase of feature sets, e.g. PolySVM-10 (trained 
on 10 features) has AUCH = 0.8831 and PolySVM-1000 has AUCH = 0.9575. AUCH of 
ROC curve gives the overall performance of the classifier in a summarized form and it is 
not necessary to have high TPR values for all FPR values. Practically, initial high values 
of TPR and low FPR are more crucial for significant overall performance. For example, 
PolySVM-100 has overall lower values of AUCH, even though, it has high values of TPR 
for than that of PolySVM-1000.  FPR  0.4 ≥
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  Figure 5: ROC curves of PolySVM. (For simplicity, in this figure and in the next figures, 
only those points that recline on the convex hull of the ROC curve are shown.) 

5.3 Performance comparison of OCC with individual SVM classifiers 

This experiment is carried out to analyze the performance of OCC and SVM classifiers. 
Figures 6(a-d) show AUCHs of ROC curves obtained for various feature sets. These fig-
ures demonstrate that with the provision of more information, TPR increases, while FPR 
decreases. Our OCC has outperformed individual SVM classifiers. This improvement in 
ROC curves is due to low values of FPR and high values of TPR. These values help the 
points shifting towards upper left corner and thus providing better decision. Such kind of 
behavior is desirable in those applications where the cost of FPR is too important. For ex-
ample, a weak patient cannot afford high FPR. Minor damage of healthy tissues may be a 
matter of life and death. On the other hand, if attempts are made to reduce FPR by simply 
adjusting decision threshold T, the risk of false negative cases might rise in a poor predic-
tion model. Such kind of prediction models, specifically in medical applications, might 
cause high misclassification cost in various fatal diseases such as lungs, liver, and breast 
cancer [31]. 
Bar chart in Figure 7 shows the comparison of experimental results in a more summarized 
form for various feature sets. It is observed that linear SVM has the lowest AUCH values. 
Due to the nonlinearity in the feature space, Linear SVM is unable to learn this space ef-
fectively. However, with the increase of feature sets, it improves AUCH performance. To 
promote diversity, usually diverse types of component classifiers are used in the develop-
ment of composite classifiers [14]. As a result, linear classifier is included to enhance di-
versity in the decision space.  
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As far as the performances of PolySVM and RbfSVM classifier are concerned, they have 
shown relatively equal performance. Both are capable of constructing a nonlinear decision 
boundary [2]. However, the performance of our OCC is superior to both these individual 
SVM classifiers. During GP evolution process, composite classifiers might have extracted 
useful information from the decision boundaries of constituent kernels. Another advantage 
gained is that composite classifiers have shown higher performance, specifically for small 
feature sets of sizes 5, 10, and 20. The general order of performance of classifiers is: 

( )AUCH AUCH AUCH AUCHOCC PolySVM RbfSVM LinSVM> ≅ >  
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Figure 6(a): ROC for 10 features             Figure 6(b): ROC for 100 features 
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Figure 6(c): ROC for 500 features       Figure 6(d): ROC for 1000 features 
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 Figure 7:  AUCHs of ROC curves of different classifiers 

5.4 Overall classifier performance  

It is observed from Figure 7 that AUCH of classifiers is enhanced with the increase of fea-
tures. Further analysis is carried out to study the performance of classifier in terms of 
AUCH of AUCHs [26]. This measure has shown more compactness by incorporating the 
performance of a classifier with respect to the variation in the feature sets. The procedure 
adopted is as follows: in the first step, different AUCH values of a classifier for different 
feature sets are obtained. Graph is plotted between AUCH versus different feature sets as 
shown in Figure 8. Finally, AUCH of these AUCH curves is computed. In the second step, 
average AUCH of each classifier is also calculated. The difference between AUCH of 
AUCH and average AUCH of each classifier is determined. The value of difference repre-
sents the variation in classifier’s performance with respect to the size of feature set. 
Higher difference indicates lower robustness of a classifier. 
Bar chart in the Figure 9 shows the overall performance of classifiers in terms of AUCH 
of AUCHs, average AUCH and their percentile difference. It is observed that linear SVM 
has the lowest AUCH of AUCHs value of 0.9205 and the largest percentile difference of 
7.45 (0.9205-0.846). The other two component classifiers have comparatively the same 
AUCH of AUCH values and relatively small percentile difference. However, OCC has the 
largest AUCH of AUCHs value of 0.988 and the smallest percentile difference of 2.9 
(0.988-0.96). These results illustrate two main advantages of OCC, i.e. higher optimality 
and robustness against the variation in feature sets. 
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Figure 8: AUCH versus no. of features  
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Figure 9: Overall performance of classifiers 

5.5 Performance comparison of OCC with optimized SVM classifiers 

The quantitative results in the Table 2 and Figure 10 highlight the improved performance 
exhibited by optimized SVM classifiers. Even though, the component SVM classifiers of 
OCC are not optimized, still OCC gives a margin of improvement as compared with opti-
mized SVM classifiers. Table 2 shows that the optimum values of and Cγ depend on the 
type of kernel function and the size of the feature set. It is observed that the optimal values 
of and Cγ varies randomly with the increase of features. This table also indicates an im-
provement for SVM classifiers after optimization. For example, the performance of linear 
SVM is improved but not appreciably. SVM classifier based on RBF kernel is more accu-
rate than linear SVM. It is also more efficient than polynomial kernel due to the lesser 
number of parameters to be adjusted. 
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Table 2: Performance comparison of OCC with Optimized SVM classifiers 
opt_LinSVM Opt_PolySVM Opt_RbfSVM OCC Classifiers 

/Feature 
sets 

AUCH Optimal 
C 

AUCH Optimal 
γ           C 

AUCH Optimal 
γ           C 

AUCH 

5 0.6779 1.1 0.7655 0. 25  16 0.8587 8.0  32 0.8900 
10 0.7896 1.2 0.8864 2.0  0. 06 0.9196 4.0  2.0 0.9344 
20 0.8167 4.6 0.9071 0.25 5.65 0.9319 2.0  4.0 0.9482 
50 0.8726 3.8 0.9609 0.35 22.62 0.9603 0.25 128 0.9629 
100 0.9007 5.1 0.9689 0.17 32.01 0.9699 0.12  128 0.9705 
250 0.927 4.4 0.9701 0.71 2.02 0.9728 2.01 4.02 0.9766 
500 0.9263 4.8 0.9730 2.82   0.08 0.9785 8.1  2.2 0.9871 
1000 0.9329 4.8 0.9754 2.82    0.176 0.9784 2.1  4.2 0.9947 
5000 0.9529 5.1 0.9816 3.1    0.21 0.9846 2.0  8.0 0.9926 
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Figure 10: AUCHs of ROC curves of different classifiers 

Figures 11 to 13 show the effect of varying and Cγ on the performance of different ker-
nels for 100 features. It is observed that as compared to parameter , parameterC γ  has 
more significant effect on the performance of SVM kernels. Figure 11 shows the behavior 
of RbfSVM with respect to and Cγ parameters. Its highest AUCH value is 0.9699 
at 0.12γ = and . In Figure 12, the highest AUCH value of PolySVM is 0.9689 
at

 C=128
0.17 and  C=32.γ =  Figure 13 indicate the highest AUCH value of Linear SVM is 

0.9007 at . 5.1C =
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Figure 11: AUCH surface of RBF kernel parameterized by and Cγ  for 100 features 

 

Figure 12: AUCH surface of polynomial kernel parameterized by and Cγ  for 100 fea-
tures at 3,  coefficient 1d r =  =
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Figure 13: AUCH versus parameter C of Linear kernel for 100 features 

5.6 Temporal cost of Optimized SVM classifiers and OCC 

Table 3 shows comparison between the training and testing times of the optimized SVM 
classifiers and OCC. It is observed that temporal cost increases with the increase of size of 
feature set. In case of optimizing kernel parameters through grid search, the temporal cost 
depends on the grid range and its step size. In this table the training and testing time is re-
ported for 200 data samples. Overall temporal cost of the classification models is: 

_ _ _OCC opt PolySVM opt RbfSVM opt LinSVM> > >  

The optimized Linear SVM takes less training and testing time but its classification per-
formance is poor. Our OCC takes comparatively more training and testing time but it 
keeps better classification performance. OCC training/testing time depends on various fac-
tors, like, training data size, length of feature set, maximum tree depth, tree nodes and the 
size of search space.  

Table 3: Comparison between the training and testing time (in sec.) 

Classifiers 
/Feature sets 

Opt_LinSVM opt_PolySVM Opt_RbfSVM OCC 

 Train Test Train Test Train Test Train Test 

5  2.781  0.0050 201.02 0.0160  2278.4  0.0470 3612.4  1.470 
10  3.001 0.0051 217.80 0.0310 1343.4 0.0580 4343.7 2.580 
50  3.105 0.0051  220.11 0.0150 1864.1 0.0560 5643.1 2.860 
100  4.328 0.0051 271.81 0.0320 5491.4 0.0780 9021.4 2.070 
500 18.42 0.0151 1263.2 0.2500 19984.1  0.4780 40402.1 3.480 
1000 36.71 0.0151 2393.1 0.500 40231.2 0.7651 57611.2 3.751 
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5.7 OCC behavior in a partially different feature space 

 OCC is trained on a particular feature space and we study its behavior on a partially dif-
ferent feature space. In table 4, OCC-10 is trained for 10 feature sets. However, its per-
formance is analyzed on the same feature space as well as on other feature spaces. This 
table shows that AUCH value of OCC-10 is maximum (0.934) for 10 features as com-
pared to other partially different feature spaces. Thus, as expected, improved behavior of 
OCC along the diagonal path is observed . In each column, from top to bottom, there is a 
gradual increase in the values of AUCH. This behavior of OCC resembles a normal classi-
fier, i.e. more information would result in higher performance. However, OCC perform 
randomly along horizontal. This might be due to the diverse nature of the GP search space 
in each run. In each run, the optimal solution may be partially/entirely different from the 
previous GP solution. 

Table 4: OCC performance for various feature spaces 

Classifiers 
/Feature sets 

OCC-10 OCC-20 OCC-50 OCC-100 OCC-500 OCC-1000 OCC-5000 

FS = 10 0.9344 0.8701 0.8902 0.8631 0.8776 0.7999 0.8751 

FS = 20 0.8901 0.9482 0.8920 0.8842 0.9002 0.8179 0.902 

FS = 50 0.9001 0.9061 0.9629 0.9111 0.9032 0.8431 0.9276 

FS = 100 0.9130 0.9190 0.9381 0.9705 0.9316 0.8930 0.9313 

FS = 500 0.9370 0.9470 0.9412 0.9481 0.9871 0.9084 0.9458 

FS=1000 0.9451 0.9500 0.9581 0.9472 0.9532 0.9947 0.9537 

FS=5000 0.9571 0.9591 0.9591 0.9651 0.9426 0.9262 0.9826 

5.8 OCC behavior in an entirely different feature space 

 In this case, we analyze the performance of OCC on entirely different feature spaces but 
of equal size. In the first experiment, the features in the testing dataset2 are sorted and the 
last 250 most distinctive features are selected in ascending order. These selected features 
are divided into five separate but equal feature sets. Each feature set contain 50 features 
and the last feature set contains the most discriminant features. OCC is trained for the last 
feature space. Same steps are carried out in the second experiment to construct a feature 
space of 100 feature sets. Their experimental results are given in bar charts of Figures 14 
and 15. It is observed from these figures that OCC performs well for the last feature set. 
Because, OCC was trained on this specific feature space, on the other feature spaces, the 
performance of OCC is equal to that of PolySVM or RbfSVM. This is because that SVM 
classifiers are tested and trained on their own feature spaces, but this is not the case for 
OCC. Even then, the performance of OCC is not less than the best of its component classi-
fiers. These figures also illustrate continuous degradation in the performance of classifiers. 
This may be due to the gradual decrease in the discrimination power of SIMBA feature se-
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lection algorithm [32]. These figures show that the last feature spaces are the most dis-
criminant.  
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Figure 14: (left) and 15: (right) show the performance of classifiers for 50 and 100 feature 
sets, respectively.  
An exemplary numerical expression classifier, in prefix form, developed by GP for 1000 
features is given as:  

f(L,R,P)=plus(le(sin(P),le(plus(sin(L),sin(sin(P))),abs(minus(L,abs(minus(sin(sin(L)),0.12826)))))),p
lus(minus(R,0.15),plus(plus(sin(plus(le(0.047,abs(le(plus(R,plus(times(kozadivide(P,plus(sin(abs(
L)),plus(cos(L),sin(sin(R))))),0.51),P)),le(sin(sin(L)),abs(minus(sin(L),plus(sin(plus(le(0.047,abs(mi
nus(sin(sin(L)),0.12))),sin(L))),minus(sin(L),abs(minus(sin(sin(L)),0.12)))))))))),sin(abs(le(plus(0.04
7,sin(absus(minus(R,0.15),plus(plus(sin(plus(le(0.047,abs(le(plus(R,plus(times(kozadivide(P,plus(
sin(abs(L)),plus(cos(L),sin(sin(R))))),0.51),P)),le(sin(sin(L)),abs(minus(sin(L),plus(sin(plus(le(0.047
,abs(minus(sin(sin(L)),0.12))),sin(L))),minus(sin(L),abs(minus(sin(sin(L)),0.12)))))))))),(mnus(R,0.1
5),pmnus(L,plus(sin(plus(le(0.04,abs(minus(sin(abs(minus(sin(L),plus(sin(plus(le(sin(L),abs(minus
(sin(sin(L)),0.12))),sin(L))),minus(sin(L),abs(minus(sin(sin(L)),0.12))))))),0.12))),sin(R))),R))))),le(si
n(sin(abs(minus(sin(L),plus)))))))). 
This expression shows that OCC function depends on predicted arrays (L, R, P) of the 
kernels, random constants, arithmetic operators and other special operators. 

6 Conclusions 

Our GP-based technique of developing composite classifier has effectively extracted use-
ful information from individual SVM classifiers. This gain in the performance of OCC is 
achieved through the genetic combination of SVM classifiers without resorting to the 
manual exhaustive grid search. From experimental results, it is also concluded that the 
performance of OCC is better than the optimized SVM classifiers. During GP evolution 
process, OCC learns the most favorable distribution within the data space. Using the pro-
posed combination technique, OCC can be tuned at any binary classification problem. Our 
investigations [25]-[26], [31] and [39] have explored the GP potential to combine the de-
cision information from its constituent classifiers. In future, we intend to analyze the per-
formance of GP combination method on medical data sets and other performance evalua-
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tion datasets.  
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