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Abstract  
 

We describe a new watermarking scheme based on intelligent shaping of a digital watermark using Genetic 
Programming (GP). The proposed method, in addition to achieving a superior tradeoff between watermark 
robustness and imperceptibility, is also able to structure the watermark in accordance with an anticipated 
attack. This has been achieved by simultaneously hiding the watermark as well as spreading and fusing it in 
such a way to resist the conceivable attack. Robustness versus imperceptibility tradeoff and increase in bit 
correct ratio after attack, have been employed as the optimization criteria in the GP search. The concept of 
bonus fitness has been used to implement multi-objective fitness based GP evolution. Experiments on 
standard images indicate that such watermark shaping functions could be developed that are cover image 
independent and enhance imperceptibility. They offer high resistance against removal and interference 
attacks of Checkmark benchmark.  
 

Keywords:  Watermarking, Genetic Programming, Perceptual Model, Discrete Cosine Transform 
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1. Introduction 
 
Due to the rapid growth in the use of digital media, there is an increasing concern about unauthorized 
handling, copying and reuse of information. Watermarking which is being considered as the practice of 
imperceptibly altering data to embed a message about that data, is an effective way to counter these types 
of problems [1]. Digital watermarking is performed upon a variety of different digital materials, like audio, 
images, text, movies and 3D models. It has also a broad range of applications, like ownership assertion, 
authentication, broadcast monitoring, and integrity control [2]. In a watermarking system, there is an 
intrinsic relation between two of its most important, but contradicting properties: robustness and 
imperceptibility. Imperceptibility means that the watermarked data should be perceptually equivalent to the 
original, unwatermarked data. On the other hand, robustness means that the watermark should not be 
rendered undetectable, unless damaging the usefulness of the cover data itself [3]. If we try to improve the 
watermark imperceptibility, robustness decreases and vice versa. Consequently, one needs to make a 
tradeoff according to the application domain. For this purpose, different methods, both in spatial as well as 
transformed domain, have been used to tailor a watermark according to the cover image [4-11].  
Watermarks are rendered undetectable with an attack, where the attack is defined as any processing of the 
watermarked data that might damage the watermark [1, 3]. Thus watermarking can be viewed as a reliable 
mode of communication to transfer important information (i.e. a watermark) embedded in a signal (e.g. a 
cover image) safely through a hostile environment [12]. Attacks can be intentional such as watermark 
estimation using Wiener filtering or unintentional such as JPEG compression. An extensive list of attacks 
appears in [1, 13-17].  
Due to the nature of diverse types of attacks, there is no generic watermarking scheme that could resist all 
sorts of attacks. However, it can be assumed that many applications are not concerned with all conceivable 
attacks, but with specific attacks that might occur before decoding [1].  Investigators have addressed this 
problem in various ways. One way is to develop watermarking approaches suitable for the anticipated 
attack [18]. For example, in case of rotational attack, alteration in the phase, rather than the amplitude of 
the Fourier component, is performed to embed a watermark [19]. Another possibility is to achieve 
robustness against the probable processing of the watermarked image, by restructuring the watermark. In 
this scenario, robustness is often achieved at the expense of imperceptibility, computational cost, data 
payload, or even robustness to some other processing.  
To defend attacks, efforts have been made to increase robustness at low cost of imperceptibility. For 
instance Jonathan et al. [3] have taken a theoretical approach to answer the complex question of “how 
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should a watermark be structured to maximize its robustness”. They have proposed that the watermark 
power spectrum should be proportional to that of the original signal. Liang et al. [21] propose robust 
watermarking using robust coefficients for embedding. Huang et al. [8, 20], on the other hand, have used 
Genetic Algorithms for the selection of coefficients to be altered for watermark embedding. However, these 
efforts concentrate on tailoring just the choice of specific coefficients, not the whole watermark, to a cover 
image and intended attack. In fact, they are not using perceptual models; rather a fixed strength of the 
alteration is used for each selected DCT coefficient. 
Perceptual models [23-26], as those of Watson’s, which have been frequently used in image compression 
are used to compute the strength of the alteration for each selected coefficient. These perceptual models 
make a tradeoff between robustness and imperceptibility according to the cover image. However, they do 
not take into consideration the watermark application and thus the intended attacks. For instance, when the 
watermarked image is expected to be JPEG compressed, it is judicious to structure the watermark in view 
of the JPEG compression. Pertinent examples exist in literature [27], where appropriate watermarking 
approaches as well embedding domains have been studied to achieve robustness against JPEG 
compression.  
One way to restructure a watermark in view of the anticipated attack is to keep high watermark strength for 
those selected coefficients that are less affected by the attack. However, firstly this requirement needs to 
consider limitations imposed by imperceptibility. Secondly, this requirement varies for different types of 
attacks. Consequently, our aim in this work is to propose and study an automatic system that can restructure 
the watermark in accordance to the cover image and intended attack. Specifically, to propose a system for 
developing suitable watermark shaping functions, which are image independent and intended attack-
resistant.  
We address these requirements through the following contributions: 

1. We consider the perceptual shaping of a watermark to be vital, not only for imperceptibility 
enhancements, but we realize it to be a method of structuring the watermark in accordance to the 
anticipated attack. 

2. We introduce the concept of developing complex and appropriate watermark shaping functions 
from the existing ones. Specifically, we consider Watson’s perceptual model, characteristics of the 
HVS and information about the distortion caused by the anticipated attack, as independent 
variables and genetically search for application-specific watermark shaping functions.  

The idea used is analogous to combining classifiers for developing complex, but appropriate classifier for a 
certain application of pattern recognition [28]. We call this technique as Genetic Watermark Shaping 
Scheme (GWSS) and the genetically developed watermark shaping functions as Genetic Watermark 
Shaping Functions (GWSF).  
In section 2, we discuss perceptual shaping of a digital watermark including discussion about perceptual 
models. We discuss attacks and their countermeasures in section 3, while imperceptibility and robustness 
measures in section 4. Section 5 explains our proposed technique GWSS. This includes description of 
various modules of GWSS and explains our bonus fitness idea used in the multi-objective based GP 
evolution. This section also describes the testing and comparison phase of the evolved GWSF. Section 6 
presents implementation details and section 7 gives results and discussions. Conclusion and future work are 
discussed at the end.  
 
2. Perceptual Shaping of a Digital Watermark 
 
A watermark is generally embedded in a cover image with a high strength in areas where it is well hidden 
and with a low strength in places where it is clearly discernible. This type of strategy is known as 
perceptual shaping of a watermark [1]. For this purpose, usually perceptual models that are used in 
compression techniques are employed. These perceptual models are able to learn the content of a cover 
image by exploiting the sensitivities/insensitivities of an HVS. They take advantage of frequency 
sensitivity models that are based on viewing conditions as well as the cover image dependent, luminance 
sensitivity and contrast masking effects. Frequency sensitivity describes the HVS sensitivity to sine wave 
gratings at different spatial frequencies and depends only on the surrounding conditions. Luminance 
sensitivity on the other hand, is a measure of the effect of detectability threshold of a signal on a constant 
background. It depends on the average luminance value of the background as well as on the signal’s 
luminance level. In block-based DCT case, the DC coefficient of each block dictates the luminance 
sensitivity for that block. The third important property of HVS that is exploited for hiding a watermark is 
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the contrast masking. It represents the detectability of one signal in presence of another signal. This 
masking (hiding) effect increases when the masking signal and the signal to be masked have same spatial 
frequency, orientation and location. In block-based DCT, the AC coefficients dictate this behavior. 
Watson’s Perceptual Model (WPM) [23, 24] has been used in JPEG compression and watermark shaping 
[4-6]. This model is based on DCT domain and has been originally proposed by Ahumada et al. [29]. On 
the other hand, Lambrecht et al. [25] have proposed a perceptual model that is based on Gabor filters. 
Watson et al. [26], have also developed a wavelet domain perceptual model. Recently Kutter et al. [30] 
have presented a perceptual model that takes into account the sensitivity and masking behavior of HVS, by 
means of a local isotropic contrast measure and a masking model. In our present investigations, we are 
comparing the developed GWSF with that of WPM.  
 
2.1 Watson’s Perceptual Model (WPM) 
  
Consider an image matrix in spatial domain. The image is transformed to matrix  by applying 8x8 
block DCT. According to the WPM, we define the visibility threshold  for every  DCT 
coefficient of 8x8 block as follows: 
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where and  denotes the vertical and horizontal frequencies (cycles/degree) of the DCT basis 

functions respectively. is the minimum value of corresponding  to . The rest of the 
parameters are also set empirically [16-17]. The effect of luminance sensitivity is considered by correcting 
this threshold corresponding to average luminance of each block: 
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where is the DC coefficient of each block ando,oX o,oX represents the average screen luminance =1024 (for 
an 8-bit image). The following relation incorporates the effect of contrast masking: 

])()()([max)( 1 ωω* i,jXi,jT,i,jTi,jT −′′=  (3) 
where is AC DCT coefficient of each block and has been empirically set to a value of 0.7.  )(i,jX ω

The corrected threshold  is finally used to compute the allowed alteration of the DCT coefficient 
instead of luminance. These allowed alterations represent the perceptual mask denoted by α : 
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where  is a scaling factor used to incorporate certain degree of conservativeness in the watermark 
corresponding to the effects like spatial masking in the frequency domain that have been overlooked. While 

and is the Kronecker delta function.  
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3. Attacks and their Countermeasures  
 
Digital watermarks can be attacked in a variety of different ways and each application requires its own type 
of robustness. Cox et al. [1] have discussed in detail the types and levels of robustness that might be 
required for a particular watermarking application. They have discussed some of the attacks as well as their 
countermeasures. Voloshynovsky et al. [13] have classified attacks into four basic categories: removal and 
interference attacks, geometrical attacks, cryptographic attacks and protocol attacks.  Intentional tempering, 
as opposed to the common signal processing attacks are difficult to survive. However, watermark attacks as 
well as their countermeasures are complex and still a topic of research. Therefore in evaluating the potential 
of a watermarking technique to meet the robustness requirements, many assumptions are made especially 
about the attacker. For example, does the attacker know the watermarking algorithm, has he got a detector 
that he can modify, what tools are available to him etc. Once the watermarking system is specified publicly, 
an attacker usually has more freedom as compared to a watermarker because the attacker is free to develop 
extra and more intricate attacks, while the watermarker can no longer amend it [1].   
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4. Watermark Robustness and Imperceptibility Measures  
 
The imperceptibility of a watermark is generally measured in terms of weighted Peak Signal to Noise Ratio 
(wPSNR) [15], Watermark to Document Ratio (WDR) [31] and Structural Similarity Index Measure 
(SSIM) [32]. SSIM measure uses the hypotheses that HVS is highly adopted for extracting structural 
information. It is argued that natural image signals are highly structured, as the nearby pixel exhibit strong 
dependencies [32]. These dependencies provide information about the structure of the object in an image, 
which are overlooked by the error-based measures. To estimate robustness during GP simulation, we use 
watermark power. We represent watermark power by mean squared strength (MSS) given as:  
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where, is the total number of blocks in the cover image and is the number of bandpass (low 
and mid frequency) DCT coefficients.  

bN 88× dN

We have used watermark power as an estimate of robustness, because in the testing and comparison phase 
of best evolved GWSF (section 5.3), the underlying watermarking technique is the same for both WPM and 
GWSF based perceptual shaping schemes. Hence, as in our previous work [22], we assume that the MSS 
will provide a suitable measure of the estimated robustness at the embedding stage of the GP simulation. 
 
5. Proposed Technique for Developing a GWSF 
The basic architecture of our proposed scheme for developing GWSF is shown in figure 1. Five modules 
work in a cyclic fashion. We first explain the overall working of the basic architecture. Details of the 
individual modules are given in section 5.1.  

The GP module produces a population of GWSF. Each GWSF is presented to the perceptual shaping 
module, where it is applied to the cover image in DCT-domain, generating a perceptual mask. In the 
watermarking stage, the watermark is shaped using the perceptual mask. The conceivable attack is 
performed on the watermarked image in the attack module. In the decoding module, the embedded message 
is retrieved from the corrupted image. The watermark imperceptibility at the embedding stage and BCR at 
the decoding stage, are then used in the scoring criterion of the GP module. In this way, the GP module 
evaluates the performance of its several generated GWSFs.  
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evaluated and scored using application dependent fitness function. The survival of fittest is implemented by 
retaining the best individuals. The rest are deleted and replaced by the offspring of the best individuals.  
The retained ones and the offspring make a new generation. Some offspring may have high score than their 
parents in the previous generation.  

The whole process is repeated for the subsequent generations. With the scoring and selection procedure in 
place, each new generation has, on average, a slightly higher score than the previous one. The process is 
stopped when a single individual in a generation gets a score that exceeds a desired value. In this way the 
solution space is refined generation by generation and thus converges to the optimal/near optimal solution. 
For a detailed study one may refer to [33]. In this present work, we search for superior watermark shaping 
functions— watermark shaping functions that are able to make superior tradeoff between robustness and 
imperceptibility with respect to existing tradeoff techniques. 
To represent a possible solution with a GP tree, one needs to define suitable functions, terminals, and 
fitness criteria according to the optimization problem. These settings for evolving GWSF are as under: 
 
GP Function Set: Function set in GP is a collection of functions available to the GP system. In our GP 
simulations, we have used simple functions, including four binary floating arithmetic operators (+, -, *, and 
protected division), LOG, EXP, SIN and COS. 
 
GP Terminals: To develop initial population of GWSF, we consider GWSF as watermark shaping function 
and the characteristics of HVS as independent variables. By doing this, in essence, we are letting GP 
exploit the search space representing different possible forms of dependencies of the watermark shaping 
function on the characteristics of HVS. Therefore, the current value of WPM-based perceptual mask, DC 
and AC DCT coefficients of 8x8 block are provided as variable terminals (equation 12 and figure 2). 
Random constants in the range [-1,1] are used as constant terminals.  
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Figure 2 An example GP tree representing a GWSF 
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Thus, each individual GWSF of a GP population is scored using equation 6 as a fitness function. The 
greater the fitness is, the better the individual has performed.  
 
Termination Criterion: The GP simulation is ceased when one of the following conditions is encountered: 

1. The fitness score exceeds 1.99 with  MSS ≥ 20.0. 
2. The number of generations reaches the predefined maximum number of generations. 

 
5.1.2 Perceptual Shaping Module 
 
A watermark shaping function tailors a watermark according to the cover image by exploiting the 
characteristics of HVS. This enables us to embed a large energy watermark at low cost of resultant 
distortion to the cover image. The perceptual shaping module receives the individual GWSF provided by 
the GP module as an input. Each GWSF is operated on the cover image in DCT-domain. Corresponding to 
the selected DCT coefficient of a block, the GWSF returns a value.  The magnitude of this value represents 
the perceptual strength of the alteration made to that coefficient. The functional dependency of the 
perceptual model on the characteristics of HVS can be represented as follows: 

( ) ( ) ( )( )jiXXjiTfkk ,,,,, 0,021 =α  (8) 
where the first variable, T is the visibility threshold representing frequency sensitivity of HVS. is the 
DC DCT coefficient, while is the AC DCT coefficient of the current block. They represent the 
luminance sensitivity and contrast masking characteristics of HVS respectively. 

0,0X
( jiX , )

Operating the GWSF on all of the DCT coefficients, we obtain the perceptual mask for the current cover 
image. The product of the spread-spectrum sequence and expanded message bits is multiplied with this 
perceptual mask to obtain the watermark. The 2-D watermark signal (see figure 3) is given as: W

bSαW ⋅⋅=  (9) 
where S  is a pseudo random sequence and b is the repetition-based expanded code vector, corresponding to 
the message to be embedded. Adding this watermark to the original image in transformed domain performs 
the embedding: 

WXY +=  (10) 
Here the watermark is our desired signal, while the cover image  acts as an additive noise. As we are 
genetically tuning WPM whose corresponding perceptual mask is represented byα , therefore, equation 9 
will be modified as follows: 

W X

bSαW ⋅⋅= G  (11) 
where , representing perceptual mask corresponding to GWSF, incorporates the dependencies from 
WPM, AC and DC coefficients and the intended attack.  

Gα
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Figure 3 Hernandez’s [5] watermark embedding scheme 
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If A denotes the information about the intended attack, then equation 8 is modified to include the resultant 
changes in the distribution of the DCT coefficients caused by the attack as follows: 

( ) ( ) ( )( )AjiXXkkfkkG  ,,,,,, 0,02121 αα =  (12) 
 
5.1.3 Watermarking Module 
 
In order to evaluate the performance of each individual GWSF of the GP population, the watermarking 
module implements the spread spectrum based watermarking technique proposed by Hernandez et al. [5]. 
This watermarking technique is oblivious and embeds message into the low and mid frequency coefficients 
of  DCT blocks of a cover image.  The employed watermarking scheme performs the statistical 
modeling of DCT coefficients using generalized Gaussian distribution. This fact helps in constructing 
better detector/decoder structures than the simple Gaussian correlation receiver that is mostly used. One of 
the reasons for using this watermarking scheme is that the DCT is applied in blocks of 8x8 pixels, in a 
manner similar to that used in JPEG algorithm. Hence, it is easy to use and compare WPM with that of the 
GWSF. Secondly, this watermarking scheme has strong theoretical foundations [5]. The embedding in 
DCT-domain is performed using equation 10. 

88×

The watermarking module of our proposed technique provides the imperceptibility of the resultant 
watermark as a feedback to the GP module. The structure of how different sub-modules work within the 
GWSS is shown in figure 4.   
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Figure 4 Block diagram of the proposed Genetic Watermark Shaping Scheme (GWSS).
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5.2 Bonus Fitness-based Evolution 
 
In the decoding stage, both imperceptibility and robustness requirements of a watermark are implemented 
through the use of multi-objective fitness function [33-34]. One way to perform this is to use equation 6. 
However, the drawback of this type of fitness function is that due weightage for learning the distribution of 
the DCT coefficients of each block of a cover image is not incorporated. In other words, instead of 
searching for a superior and image independent GWSF, main effort of the GP search is spent on searching a 
GWSF that results in high BCR value. Consequently, optimization of robustness versus imperceptibility 
tradeoff is belittled. This type of GWSF is not image adaptive and might have very poor performance for 
attacks other than the intended attacks. This problem is solved by using the idea of bonus fitness that we 
have used in our earlier work [35]. As can be examined from figure 4, those GWSF that make a better 
tradeoff between robustness and imperceptibility, are given bonus fitness. The bonus fitness is the amount 
of resistance against the intended attack in terms of . Thus equation 6 is modified as follows: attackBCR

⎩
⎨
⎧ ≥≥+

=
otherwiseFitnessW

TMSSandTSSIMifFitnessWFitnessW
Fitness

11

212211

*
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    (13) 

where  while SESSIMFitness .1 = attackBCRFitness =2  and , are lower bounds of and 
respectively. 

1T 2T SESSIM .

MSS
In this way, the second driving force is separated from the first and basic driving force through the concept 
of bonus fitness. Otherwise, the GP simulation will usually tend to focus on the second requirement and 
will altogether neglect the basic requirement. Figure 5 elaborates this idea of bonus fitness incorporated in 
the GP search. We can observe that in each generation, those GWSF that make a good tradeoff are tagged 
(they are represented with star symbol and thus conceptually separated from the main GP search beam). A 
competition in terms of the 2nd fitness among these tagged GWSF then starts immediately. The overall 
fitness is improved with improvement in both types of fitness. The selection of when to tag an individual 
GWSF, by judging the tradeoff, is of crucial importance. It is implemented by requiring the MSS and SSIM 
values to lie above certain lower bounds. The smaller these lower bounds for fulfilling the first fitness 
criteria are, the larger is the diversity among the tagged GWSFs.  
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 the performance of the best-evolved GWSF, its expression is saved at the end of the GP 
est-evolved GWSF is then compared with that of WPM in terms of watermark shaping. 

atermark shaping ability is assessed by computing watermark imperceptibility as well as 
res. Figure 6 shows the details of the testing phase for the evolved GWSF. 

ation Details 

ATLAB environment for our experimental studies. To employ GP, we use GPLAB 
The GP parameter settings are shown in table 1, while the remaining parameters are used 
oftware.  

ze 256x256 is used as a cover image with 22=dN (7 to 29 in zigzag order) during the GP 
age size is kept equal to 64 bits. Following [23-24], the parameters of WPM are set as 

, , 1548. 7281. u = 683min .f =  cycles/degree and = 0.649. To estimate the value of  Ta
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parameter  for generalized Gaussian Distribution-based modeling of each (i,j) DCT sequence [5], we 
have considered its range  [0.02, 2.0] with grid step of 0.02. The watermark power, represented by MSS, is 
constrained to lie above a certain lower bound for all the individuals. To assign bonus fitness, we have 
taken , ,  and as 0.96 , 20.0, 1.0 and 1.0 respectively. The values of ,  are set empirically. 
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ure 6 Block diagram of the testing and comparison phase 
ages except Baboon and Boat are of size 256x256. The attacks for which specific 
ude adaptive Wiener filtering of window size 3x3, JPEG compression (QF = 80), 
w size 3x3 and Gaussian noise of σ = 50. In order to develop GWSF, keeping 
00 and no. of generations 30, the GP simulation consumes about one hour on a 
GHz speed and 256 Mb RAM). In the testing phase, the watermarking scheme 
SF spends about 30 sec to watermark Lena image. 
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7. Results and Discussion 
 
7.1 Perceptual Shaping Using GWSF 
 
In figure 7, watermarking strength corresponding to each bandpass DCT coefficient of block-based DCT is 
shown. These strengths are produced by the Wiener attack-resistant GWSF for Lena image. It is observed 
that depending upon the current AC and DC coefficient, it provides suitable imperceptible alterations 
according to the spatial content of that block. This fact indicates that GWSF is able to exploit HVS for 
shaping the watermark according to any cover image. In other words, GWSF makes the watermarking 
technique adaptive with respect to the cover image. The resultant watermark is shown in figure 8. 
 
7.2 Imperceptibility of the resultant watermark 
 
In figure 11, we have shown the difference image, obtained by subtracting the original image (figure 9) 
from the watermarked image (figure 10) in spatial domain. The pixel intensity of the difference image is 
amplified ten times for illustration purpose. Although, DCT domain is used for embedding, still GWSF is 
able to learn the spatial distribution of the Lena image, as most of the strong embedding is performed in 
highly textured areas.  
 
7.3 GWSF developed for Wiener Attack 
 
In table 2, both WPM and Wiener attack-resistant GWSF are compared in terms of the marked image 
quality and for 8 different standard images. The perceptual masks corresponding to both 
WPM and GWSF are multiplied with some scaling factor to achieve equal distortion of the resultant 
watermarked image (in terms of approximately equal SSIM value for each image). It is observed that 
although evolved using Lena image, Wiener attack-resistant GWSF is image independent. This is because 
its imperceptibility measures are comparable to that of WPM for the entire test images. However, in terms 
of performance, the Wiener attack-resistant GWSF has superior performance as compared to 
that of WPM, for almost all of the test images. The Wiener attack-resistant GWSF is given below: 

)1( attackBCR−

)1( attackBCR−

( ) ( )( ) ( )( ) ( )( )( ) ( )     ,*22897.00.22897coslog ,,sincos  , 212121 jiXkkkkkk +++= αααG  (14) 
 
7.4 GWSF developed for Gaussian Noise Attack 
 
Table 3, shows the same comparison in case of Gaussian noise attack (σ = 50). Again, Gaussian attack-
resistant GWSF has comparable performance to that of WPM in terms of imperceptibility, while superior 
performance in case of robustness . Figure 12, shows the watermarked image after being 
attacked by the Gaussian noise. Whereas, figure 13 demonstrates the 

)1( attackBCR−
)1( attackBCR− versus standard 

deviation performance of both WPM and GWSF. It can be observed that Gaussian noise attack-resistant 
GWSF has low values corresponding to different standard deviations.  )1( attackBCR−
 
7.5 GWSF developed for JPEG Compression Attack 
 
Figure 14, 15 and table 4 show the same comparison in case of JPEG attack. It is observed that 
imperceptibility performance of the JPEG attack-resistant GWSF is low as compared to that of WPM (low 
SSIM values corresponding to less energy watermark embedding). But on the other hand, the improvement 
in  performance in this case is far better from the previous two cases. )1( attackBCR−
 
7.6 GWSF developed for Median Filtering Attack 
 
Table 5 compares the evolved Median attack-resistant GWSF to that of WPM. In this case the 
imperceptibility performance at a certain level of watermark power is comparable, but  
performance is again superior. The reason behind this is that the attack-resistant GWSF spreads the 
watermark energy in such areas, where the attack as well as the distortion affect is less.  

)1( attackBCR−
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Figure 7 Watermarking strength for Lena image using 

evolved GWSF 

Figure 10 Watermarked Lena image with Wiener attack-
resistant GWSF 

 
Figure 8 Watermark generated for Lena image using 

evolved GWSF 

Figure 12 Gaussian noise attacked image (σ = 50) 

 
 
 

 
 

Figure 9 Original Lena image 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 Difference image of Lena 
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TABLE 2 Wiener Attack-Resistance Performance Comparisons. Note that the attack-resista
performance is compared by keeping the imperceptibility of the watermark almost the same in 

both cases.  

nce 

 

Images Perceptual 
Model 

Scaling 
factor MSS SSIM WDR wPSNR (1-BCR) 

WPM 0.30123 63.4553 0.9737 -29.604 40.617 0.125 Trees 
GWSF 0.48 83.991 0.9738 -28.386 39.951 0.0469 
WPM 0.30123 23.696 0.9816 -33.3294 43.245 0.2656 Lena 
GWSF 1.282 17.1462 0.9816 -34.7357 44.0532 0.0 
WPM 0.30123 72.2899 0.9779 -27.3715 43.477 0.0469 Baboon 

(232x248) GWSF 0.519 89.7937 0.9779 -26.4274 43.277 0.0313 
WPM 0.30123 62.3051 0.9711 -28.913 40.2752 0.0938 Couple 
GWSF 0.552 80.3543 0.9711 -27.8227 39.68 0.0781 
WPM 0.30123 55.9301 0.9730 -29.908 40.6763 0.125 Boat 

(232x248) GWSF 0.52 67.9235 0.9731 -29.065 40.144 0.0313 
WPM 0.30123 36.278 0.9737 -33.6307 41.3071 0.2344 Fruits 
GWSF 0.513 71.0392 0.9771 -30.818 39.7361 0.1719 
WPM 0.30123 26.643 0.9745 -33.6307 41.3071 0.0781 House 
GWSF 0.5524 39.1316 0.9745 -31.9648 39.7503 0.0781 
WPM 0.30123 42.3627 0.9778 -29.4101 41.556 0.0781 Chemical 

Plant GWSF 0.494 56.589 0.9778 -28.1518 40.8834 0.0561 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 3 JPEG Attack-Resistance Performance Comparisons. Note that the attack-resistance 
performance is compared by keeping the imperceptibility of the watermark almost the same in 

both cases. 
 

Images Perceptual 
Model 

Scaling 
factor MSS SSIM WDR wPSNR (1-BCR) 

WPM 0.30123 63.4553 0.9737 -29.604 40.617 0.0625 Trees 
GWSF 1.505 67.8033 0.9737 -29.3161 40.4706 0.0469 
WPM 0.30123 23.696 0.9816 -33.3294 43.245 0.2031 Lena 
GWSF 1.554 25.126 0.9816 -33.0744 43.1152 0.1875 
WPM 0.30123 72.2899 0.9779 -27.3715 43.477 0.0781 Baboon 

(232x248) GWSF 1.59 74.627 0.9778 -27.232 43.45 0.0313 
WPM 0.30123 62.3051 0.9711 -28.913 40.2752 0.0625 Couple 
GWSF 1.694 67.173 0.9712 -28.588 40.1253 0.0469 
WPM 0.30123 55.9301 0.9730 -29.908 40.6763 0.0938 Boat 

(232x248) GWSF 1.594 57.696 0.973 -29.772 40.606 0.0938 
WPM 0.30123 36.278 0.9737 -33.6307 41.3071 0.1563 Fruits 
GWSF 1.53 42.734 0.9771 -33.025 41.0104 0.1406 
WPM 0.30123 26.643 0.9745 -33.6307 41.3071 0.1719 House 
GWSF 1.609 27.1527 0.9745 -33.547 41.288 0.1563 
WPM 0.30123 42.3627 0.9778 -29.4101 41.556 0.0781 Chemical 

Plant GWSF 1.51 46.917 0.9778 -28.966 41.289 0.0781 
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 TABLE 4 Gaussian Attack-Resistance Performance Comparisons. Note that the attack-resistance 

performance is compared by keeping the imperceptibility of the watermark almost the same in 
both cases. 

 

Images Perceptual 
Model 

Scaling 
factor MSS SSIM WDR wPSNR (1-BCR) 

WPM 0.30123 63.4553 0.9737 -29.604 40.617 0.2344 Trees 
GWSF 0.787 40.533 0.9737 -31.55 40.7437 0.0469 
WPM 0.30123 23.696 0.9816 -33.3294 43.245 0.1719 

Lena 
GWSF 1.252 18.83 0.9816 -34.329 43.313 0.0 
WPM 0.30123 72.2899 0.9779 -27.3715 43.477 0.3438 Baboon 

(232x248) GWSF 1.163 78.475 0.9778 -27.014 41.488 0.2188 
WPM 0.30123 62.3051 0.9711 -28.913 40.2752 0.2188 

Couple 
GWSF 1.072 104.39 0.971 -26.659 36.9406 0.0781 
WPM 0.30123 55.9301 0.9730 -29.908 40.6763 0.1563 Boat 

(232x248) GWSF 1.178 63.283 0.973 -29.362 38.104 0.0781 
WPM 0.30123 36.278 0.9737 -33.6307 41.3071 0.25 

Fruits 
GWSF 1.563 49.919 0.9771 -32.353 40.3825 0.0625 
WPM 0.30123 26.643 0.9745 -33.6307 41.3071 0.1719 

House 
GWSF 1.818 24.124 0.9745 -34.055 41.562 0.0 
WPM 0.30123 42.3627 0.9778 -29.4101 41.556 0.1875 Chemical 

Plant GWSF 0.978 20.622 0.9778 -32.535 42.4616 0.0781 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 TABLE 5  Median Filtering Attack-Resistance Performance Comparisons. Note that the attack-

resistance performance is compared by keeping the imperceptibility of the watermark almost the 
same in both cases. 

 

mages Perceptual 
Model 

Scaling 
factor MSS SSIM WDR wPSNR (1-BCR) 

WPM 0.30123 63.4553 0.9737 -29.604 40.617 0.1563 
Trees 

GWSF 1.413 26.869 0.9737 -33.34 42.5537 0.0156 

WPM 0.30123 23.696 0.9816 -33.3294 43.245 0.1563 
Lena 

GWSF 1.128 10.2681 0.9816 -36.9644 45.06 0.0 

WPM 0.30123 72.2899 0.9779 -27.3715 43.477 0.3438 Baboon 
(232x248) GWSF 1.544 35.026 0.9779 -30.527 44.149 0.25 

WPM 0.30123 62.3051 0.9711 -28.913 40.2752 0.2188 
Couple 

GWSF 1.65 34.089 0.971 -31.53 41.4407 0.0 

WPM 0.30123 55.9301 0.9730 -29.908 40.6763 0.1563 Boat 
(232x248) GWSF 1.382 23.9525 0.973 -33.6025 42.4273 0.0 

WPM 0.30123 36.278 0.9737 -33.6307 41.3071 0.125 
Fruits 

GWSF 1.066 12.3244 0.9771 -38.4293 41.865 0.0313 

WPM 0.30123 26.643 0.9745 -33.6307 41.3071 0.2031 
House 

GWSF 1.003 10.0407 0.9745 -37.8633 44.3606 0.0469 

WPM 0.30123 42.3627 0.9778 -29.4101 41.556 0.0156 Chemical 
Plant GWSF 1.405 24.8827 0.9778 -31.7236 42.4763 0.0781 
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Figure 14 (1-BCR) vs. quality factor of JPEG 

compression attack.  
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Figure 16 Accuracy vs. complexity plot of GP simulation 

for evolving median filtering attack-resistant GWSF  
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Figure 15 Bar chart of (1-BCR) vs. JPEG attack 
(QF=70) for different images.  

 
Figure 16 shows the accuracy versus complexity plot of GP simulation. It is observed that as generations 
pass by, improvement in fitness of the best Median attack-resistant GWSF is achieved at the cost of its 
complexity. That is, with increase in fitness of the best GWSF of a generation, its genome’s total number of 
nodes as well as its average tree depth increases. The above analysis of the various evolved GWSFs 
indicate that GWSS develops GWSF that results in cover image as well as attack dependent restructuring of 
the watermark. 
 
Conclusions 
 
In this paper we have considered the GP-based perceptual shaping of a digital watermark in accordance to 
the cover image and anticipated attack. The GP tuned GWSFs are image adaptive and the GWSS as a 
whole is attack adaptive. A significant improvement in resistance against the intended attack is achieved by 
letting the GP search exploit the attack information. This is in essence, like attack-informed embedding. 
Both these attributes of a GWSF; superior tradeoff and high resistance against an anticipated attack, are 
obtained by incorporating the concept of bonus fitness in multi-objective fitness function. Developing 
GWSF needs considerable execution time (about one hour). However, once the best GWSF is developed, 
then employing GWSF for watermark shaping is quite straight forward and easy to implement. Even in the 

 14
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development phase, with the use of fast and parallel processing based implementations of GP [38-39], it is 
possible to use GP-based watermarking to real business applications. The proposed GWSS is applicable for 
tuning other perceptual models as well. In addition to the selection of suitable strength, the selection of 
DCT coefficients for embedding as proposed in [8] may also be performed. This will require the whole 63 
AC coefficients of a DCT block to be considered for embedding, instead of the middle frequency 
coefficients. This may further improve the resistance against the intended attack, as different attacks 
usually affect different frequency bands in DCT block. Work is in progress to develop GWSF for 
restructuring of a watermark against a battery of attacks. 
 
Acknowledgements: The authors greatly acknowledge the financial support provided by the Higher 
Education Commission, Government of Pakistan, under the indigenous PhD scholarship program (No. 17-6 
(183)/Sch / 2001). 
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