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Abstract - Colon cancer causes deaths of about half a million people every year. Common 

method of its detection is histopathological tissue analysis, which, though leads to vital 

diagnosis, is significantly correlated to the tiredness, experience and workload of the pathologist.

Researchers have been working since decades to get rid of manual inspection, and to develop 

trustworthy systems for detecting colon cancer. Several techniques, based on spectral/spatial

analysis of colon biopsy images, and serum and gene analysis of colon samples, have been 

proposed in this regard. Due to rapid evolution of colon cancer detection techniques, a latest 

review of recent research in this field is highly desirable. The aim of this paper is to discuss 

various colon cancer detection techniques. In this survey, we categorize the techniques on the 

basis of the adopted methodology and underlying dataset, and provide detailed description of 

techniques in each category. Additionally, this study provides an extensive comparison of 

various colon cancer detection categories, and of multiple techniques within each category.

Further, most of the techniques have been evaluated on similar dataset to provide a fair 

performance comparison. Analysis reveals that neither of the techniques is perfect; however,

research community is progressively inching towards the finest possible solution. 
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1. Introduction

Large intestine performs wide variety of functions, ranging from breakage of large molecules to   

nutrients and water absorption [1, 2]. Colon is one major constituent of large intestine, and its



cancer is a major reason of deaths in western and industrialized world [3]. There are many 

reasons of colon cancer, like, chain smoking, increasing age such as age above 50 years, family 

history of colon cancer, low intake of fruits, and heavy intake of red meat and fats [4, 5]. 

Traditionally, colon cancer is diagnosed using microscopic analysis of histopathological colon 

samples. In such an examination, pathologists observe the colon samples under microscope to 

detect malignancy, and assign cancer grade depending upon the level of organizational changes 

they observe in tissues. But, the manual examination has a few limitations. First, it is subjective

because quantitative measures such as cancer grades/stages mainly depend on the visual 

assessment of pathologists. Second, it has inter/intra observer variation in grading [6-9]. Such 

vulnerabilities in the manual process result in need of automatic colon cancer diagnostic 

techniques [10, 11], which could provide second opinion to the pathologists in the short run and 

could serve as an independent trustworthy system for detection of cancer in the long run. 

Automatic detection of colon cancer has two major directions; segmentation and classification. 

In segmentation, heterogeneous colon samples are segregated into homogenous regions based on 

spatial distribution of tissues in the images. Next, normal and malignant labels are assigned to 

the regions based on certain features. In literature, several approaches exist for medical image 

segmentation such as pixel based, region based and graph based. Pixel based methods divide 

image pixels into different clusters based upon their colors using various approaches like 

watershed transform [12], clustering [13, 14], adaptive segmentation [15], and thresholding [16]. 

Region-based segmentation methodologies use similar approach, but they maintain connectivity 

between pixels of similar clusters. Well-known techniques of this category include splitting and 

merging [17], and region growing [18]. Graph-based techniques [19, 20] assume image pixels as 

nodes of a graph, and weight between them as similarity between pixels. Segmentation then 



involves graph partitioning into sub-graphs while minimizing cost functions. In classification, 

colon samples are divided into normal and malignant categories based upon certain features. 

Classification and segmentation may be followed by cancer grading step, in which quantitative 

cancer grades are assigned to the samples depending upon certain quantitative measures. 

Automated diagnostic systems have been proposed for cancer detection in various body parts 

such as brain [21-25], breast [26-30], cervical [31], prostate [32, 33], and lungs [34]. In this 

connection, several techniques have also been proposed for colon cancer detection. A subset of 

these techniques, known as texture analysis based techniques, have exploited the noteworthy 

contrast between texture of normal and malignant parts of colon biopsy images for cancer 

detection [35-41]. Several statistical and morphological features, which have proven to be good 

discriminators in the past [42, 43], have been investigated in these studies. There are a few other 

techniques, called object oriented (OO) texture analysis based techniques, which incorporate 

background knowledge of normal and malignant tissue organization into the diagnostic process

[44-52]. Focus of a few studies is to perform hyperspectral analysis on colon biopsy images, and 

classify samples into different classes [53-59]. Another interesting and quite promising method 

of colon cancer detection is simultaneous analysis of thousands of human genes to detect genetic 

alterations responsible for cancer [60-73]. Some researchers have also exploited the variation in 

chemical composition and resulting Raman spectra of normal and malignant serum for cancer 

diagnosis [74-83]. Another method of colon cancer detection is to simulate the neural activity 

happening in the brain by analyzing organization of colon biopsy images [84, 85]. 

In 2009, Demir et al. reported a survey in which a few issues involved in automated colon cancer 

diagnosis based on histopathological images have been discussed [86]. However, this paper does 

not cover colon cancer detection techniques in detail. Further, extensive research has been 



carried out in the field of automated colon cancer diagnosis in the last two decades, but so far, a

comprehensive survey in this field has not been reported. Therefore, a latest review of the

research in the field of colon cancer diagnosis is highly desirable. This work thus fulfills the 

basic need of researchers working in this field by providing an extensive discussion on classical 

as well as contemporary techniques. Hence, this paper serves a needy purpose in this connection. 

In this article, we divide colon cancer detection techniques into five major categories. In each 

category, detailed explanation of most of the techniques along with a healthy discussion on their

merits and demerits is provided. Further, performance comparison of different categories and of 

several techniques within each category is presented in detail. The novel contribution of this 

study is the implementation and evaluation of colon cancer detection techniques on same dataset.

Rest of the paper is organized as follows. Section 2 highlights organization of colon tissues.

Section 3 presents a detailed insight into existing colon cancer detection techniques. Section 4

provides a performance review of the techniques. Section 5 evaluates the performance of various 

colon cancer detection techniques on prepared datasets, and section 6 concludes the paper.

2. Benign and Malignant Tissue Organization

Normal colon tissues have well-defined organizational structure. However, this arrangement 

varies in case of cancer. Variation usually depends upon the cancer stage. Initial cancer stages 

deform the cells very little. Therefore, are harder to detect. On the other hand, advanced stages 

significantly deform the cells, thereby making their detection easier. 

(a) (b)



(c) 
Figure 1: (a) Normal and (b) malignant colon tissues, and (c) constituents of normal colon tissue

Figure 1 presents normal and malignant colon tissues. Deformation introduced by cancer is 

clearly visible in Figure 1(b), but tissues are organized in normal colon sample (Figure 1(a)).

Figure 1(c) presents three constituents (epithelial cells, non-epithelial cells, and lumen) of normal 

colon tissue. Epithelial cells usually surround lumen and form glandular structure, whereas non-

epithelial cells, called stroma, lie in between these structures. There are five stages of colon 

cancer(0,I-IV) according to National Cancer Institute [87]. These stages are similar to the Duke’s 

stages (0,A-D) [88, 89]. Stage 0 is the earliest stage in which cancer just starts to develop. It is 

still restricted to the innermost lining of colon. In Stage I, cancer has reached to the middle layer 

of colon. In Stage II, cancer has reached beyond the middle layer. Cancer is called stage-III if it 

reaches lymph nodes, and is found in at least three of them. Stage IV is the final stage, wherein 

cancer has reached other body parts such as lungs and liver. Figure 2 demonstrates these stages.

(a) (b)
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Figure 2: Different stages of colon cancer: (a) Stage 0, (b) Stage I, (c) Stage II, (d1, d2) Stage III, and (e) Stage IV

3. Colon Cancer Segmentation and Classification Techniques

Generally, there are five major categories of colon cancer detection techniques depending upon the 

underlying dataset and adopted methodology. These categories include spectral analysis, texture 



analysis, gene analysis, serum analysis, and OO texture analysis. Texture, hyperspectral and OO 

texture analysis based techniques work on images. Therefore, these techniques have been referred 

as image analysis based techniques in this survey. A few techniques, which work on colon biopsy 

images but are not well established, have been discussed in the miscellaneous category. Gene and 

serum analysis based techniques analyze physical sample for cancer detection, therefore, have been 

named physical sample based colon cancer detection techniques. A broad level categorization of 

these techniques is presented in Figure 3, and the following text explains these techniques in detail. 

Figure 3: Top-level breakdown of colon cancer classification/segmentation techniques

3.1. Texture Analysis based Techniques

Texture is a combination of repeated patterns with regular/irregular frequency [90]. There is a 

significant variation in the texture of normal and malignant colon tissues. A few researchers have 

exploited this variation in their respective studies, and achieved good classification on colon 

biopsy datasets. Entropy and correlation have been commonly used to quantize texture. 

However, several other parameters are also in practice. Detailed information on textural features 

may be found in the classical book of digital image processing [91]. Well-known texture analysis

based colon cancer detection techniques have been summarized in the following text.

Esgiar et al. proposed a promising method of colon cancer detection by using textural features 

[35]. In their work, original colon biopsy images of size 512x512 are further divided into four 



sub-images of size 256x256, and the sub-images having little tissue content are excluded. Gray-

level co-occurrence matrix (GLCM) is then calculated for each sub-image. Normalized GLCM is

used to determine textural features of angular second moment, contrast, correlation, inverse 

difference moment, dissimilarity and entropy by using Equations (1)–(6), respectively. 

R R
2

1 1

P
 
 ij
i j                                                                                                                                         (1)
R R

2 2

1 1

( ) P
 
 ij
i j

i - j
                                                                                                                              (2)

R R

1 1

( )( )P 
  

 r c ij

i j r c

i - j -

                                                                                                                 (3)
R R

2
1 1

P

1 ( )    
 ij

i j i - j                                                                                                                         (4)
R R

1 1

P
 
 ij
i j

i - j
                                                                                                                                (5)

R R

1 1

P P
 

 ij ij
i j

log
                                                                                                                            (6)

where Pij is the ijth entry in the normalized GLCM matrix. i and j are the integer pixel numbers 

along its rows and columns, which are quantized up to level R. r and c are the mean of row 

sums and column sums, respectively. Likewise, r and c are the standard deviations of row 

sums and column sums, respectively. The reported classification accuracy is 90.2% for a

combination of correlation and entropy by using linear discriminate analysis (LDA) classifier.

Esgiar et al. further extended their previous work, and employed geometric and texture features

[36]. Geometric features comprise features of shape and orientation. Texture features encompass 

energy, inertia and homogeneity, and are calculated from GLCM of the image. The reported 

classification accuracy for geometric and texture features is 80% and 90%, respectively.

Esgiar et al. improved their previous work [35] by adding image fractal dimensions to the feature 

set [37]. Concept of statistical scaling is used in calculating fractal dimensions i.e. in a self-



similar structure, a relationship ‘Df’ exists between scale factor of box size and number of boxes 

to which structure can be divided. Scale factor r is varied (3,…51), and the number of grid boxes 

B(r) containing the structure is counted. Relationship ‘Df’ is presented in the following equation:
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r
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Df function is plotted for each image, and a regression line is fitted to the plotted points. Fractal 

dimension is calculated from the slope of the regression line. K-nearest neighbor (KNN) for k=2,

and LDA are used as classifiers with leave one out (LOO) approach of data formulation. Fractal 

analysis in combination with correlation and entropy improved accuracy up to 94.1%. An 

extended version of this study has been presented in another research article [38].

Further, Kalkan et al. combined texture and structural features to classify colon samples into 

normal, pre-cancerous (adenomatous and inflamed) and malignant classes [39]. In this work, 

2000 patches per class have been used. 1108 texture features are computed from each patch by 

evaluating 32 bins color channel histograms of R, G, B, H, S, V color components of raw image. 

Further, each patch is divided into 16 sub-patches, and the following structural features are 

calculated per sub-patch: the number of nuclei per tissue area, the individual and the pair wise 

ratio of each of stroma, cellular and lumen to the tissue area. Further, forward feature selection 

strategy is applied to select meaningful features. Logistic regression classifier with equal class 

priorities is applied for classification, and 77.29%, 82.25%, 76.08% and 66.86% classification 

accuracy is reported for adenomatous, malignant, inflamed and normal classes. 

Recently, Jiao et al. proposed a simple and computationally tractable method [40] of automatic 

colon cancer detection. In this work, colon biopsy images are initially converted to gray-scale 

images. Statistical features of mean and variance are computed form the images. Likewise, 

texture features of angular second moment, contrast, correlation and entropy are computed from 



GLCM matrix in four different orientations of 0 0 0 00 ,45 ,90 ,135  . SVM with 3-fold cross-

validation is employed to identify normal and malignant images. In testing phase, performance 

of each new feature is calculated by adding it to previous features. Results revealed that the 

composite feature vector comprising eighteen features is more discriminative compared to 

individual features. Moreover, Ng et al. carried out a research study [41] with an aim to 

determine relationship between changes happening in the texture of malignant colon images and 

the survival rate of patients. In this work, texture features of standard deviation, entropy, 

uniformity, kurtosis and skewness were extracted from pixel distribution histograms of contrast 

material-enhanced CT images. Kaplan-Meier analysis was performed to determine the 

relationship between these features and 5-year survival rate. The Cox proportional hazards model 

was used to assess independence of texture features from stage. This texture analysis process was 

followed up on the same cancer patients until their death. Analysis revealed that Kaplan-Meier 

survival plots for texture features are significantly different from each other. Results also 

revealed that features are independent from the cancer stage, and can be used to model 

malignancy in all the cancer stages. Further, results showed that fine texture features are 

associated with poorer 5-year overall survival rate for the patients of colon cancer.

3.2. OO Texture Analysis Based techniques

These techniques exploit background knowledge about size and spatial distribution of colon 

tissue components for segmentation and classification of colon biopsy images. These techniques 

have been further divided into segmentation and classification techniques.

3.2.1. OO Texture Analysis Based Segmentation Techniques

Initially, OO texture analysis was premeditated for segmentation of colon biopsy images. In this 

connection, OOSEG (object oriented segmentation) [44] is the first OO texture analysis based 



segmentation technique that comprises three well-defined phases, namely object definition, 

texture definition, and segmentation. In object definition phase, k-means [92] is applied to divide

image pixels into three clusters depending upon color intensities of tissue components such as 

purple-colored nuclei, white-colored lumen and epithelial cells, and pink-colored stroma. 

Circular primitives (example given in Figure 4) are then located using a circle fitting process,

summarized in Algorithm1. Primitives of each cluster are further divided into two categories

depending upon user-defined threshold, thereby resulting in six object types. In texture definition

phase, two features called object size uniformity and object spatial distribution uniformity are 

calculated for each image pixel by considering six object types, thereby resulting in twelve 

features for each pixel. Segmentation algorithm initializes, grows and finally merges seeds. In 

initialization phase, pixels having values of all the uniformity measures less than corresponding 

threshold (sum of mean and standard deviation) are marked as seeds. In seed growing, initial 

regions (seeds) are grown until they span the entire image. In region merging, two features, 

namely percentage area of each object type in a region, and percentage of combined areas of 

different objects that belong to particular cluster type in the region are calculated. Regions are 

merged if they are adjacent, and Euclidean distance between their features is less than a merge 

threshold. Region merging phase merges small regions, and yields final segmentation results.

Algorithm1: Circle fitting algorithm
For a given set of pixels P.
Step 1:

Step 2:

Step 3:
Step 4:

Assign each particular pixel xi to the largest possible circle that includes this particular pixel xi

and that is formed by only the pixels xj ∈ P.
Form connected components C = C1, C2, ..., CN from the pixels such that the connected 
component Ck consists of the pixels that are assigned to the circle k. 
Eliminate the connected components smaller than an area threshold.
For each component Ck, recursively call Steps 1 and 2 considering only the pixels of this 
connected component (i.e., in Step 1, P will be a set of pixels belonging to the component Ck) 
until there is no change in the pixels of the component. (There will be no change when a 
component is circular.)



OOSEG [44] though produces reasonable results has a few limitations For instance, it needs 

manual adjustment of parameters for each test image. Therefore, Tosun et al. proposed a new 

technique with an aim to identify a set of parameter values applicable to all image instances. In 

this work [45], object locating process is similar to OOSEG [44], but calculations in later stages 

are performed with reference to objects rather than pixels. In feature extraction phase, a set of 

twelve features as used in [44] is calculated for each object. Next, Voronoi diagram is 

constructed on the centroids of all the objects to determine initial seeds. Any two adjacent 

objects are grouped if Euclidean distance between them is smaller than a predefined similarity 

threshold. Later, groups having number of objects larger than a threshold are declared seeds. 

Seeds are iteratively grown until they cover the entire image. Final regions comprise objects. 

Therefore, Voronoi diagram of the objects is drawn in order to get pixel based regions.

(a) (b)
Figure 4: (a) Purple cluster of a colon biopsy image, and (b) identified primitives

Demir et al. proposed a valuable colon biopsy image segmentation technique [46]. In this work, 

circle fitting process is similar to OOSEG [44] with one exception that only purple and white 

clusters are used to locate nucleus and lumen objects, respectively. Next, an object-graph [93] is 

constructed on these objects. Edges are assigned between each lumen object and its N closest 

lumen and N closest nucleus neighbors. For each lumen object L, features having information 

about areas, length of edges between L and its nucleus and lumen neighbors are extracted by 

considering neighbors within a circular window around L. These features are further used by the 

k-means algorithm to segregate lumen objects into ‘gland’ and ‘non-gland’ classes. Objects of



‘gland’ class are treated as initial seeds. Region growing process involves another object-graph

which is constructed on nucleus objects. Starting from the initial lumen seeds, more lumen 

objects are added to the graph until an edge of the nucleus graph is encountered. Edges of the 

nucleus graph are used to stop region growing because glands are usually encircled by the 

nucleus objects, and encountering a nucleus object means that gland boundary is reached. In the 

end, false gland elimination, which has been proven to be effective in [94, 95], is applied to 

remove false glands.

Tosun et al. further improved OOSEG by employing graphs for quantifying spatial relationship 

between cytological tissue components [47]. In the first step of this work, previously proposed 

methods of circle fitting [44], and graph generation [46, 93] are employed. In the second step, 

graph-edge runs are calculated. Graph-edge runs are based on the idea of gray level run-length 

matrices [96]. Graph-edge run is a path that starts from an initial node, and contains all nodes 

reachable with a set of edges of the same type. For calculation of gray-level run-length matrix 

(GRLM), a circular window is hypothesized at center of a node, and then breadth first search is 

used to compute path for each particular edge type that lies within the window. In feature 

extraction phase, four features, namely short path emphasis (SPE), long path emphasis (LPE), 

edge type non-uniformity (ETN), and path length non-uniformity (PLN) are computed. ETN and 

PLN help in determining the effect of edge type and path length distribution on texture, and 

occupy least values when the runs are uniformly distributed over all edge types and path lengths. 

Segmentation totally relies on objects instead of pixels, and comprises three steps: seed 

determination, region growing, and region merging. A window is centered on current object, and 

accumulated GRLM of the encircled object is calculated, which is used in feature calculation of 

current object. Initial seeds are determined by disconnecting pairs of adjacent objects having 



intermediate distance greater than a distance threshold, and removing components having lesser 

number of objects than a predefined threshold. Objects are merged to the seeds if they are 

adjacent, and Euclidean distance between their features is smaller than merge threshold. Finally, 

Voronoi diagram of the objects is constructed to demarcate final region boundaries.

Simsek et al. [48] introduced co-occurrence features to quantify spatial relationship between 

objects in a colon biopsy image. Circular objects are located by using circle fitting algorithm

[44]. A co-occurrence matrix is calculated for each object by placing a circular window on the

object, and measuring the number of times objects of one type co-occur with objects of another 

type at a given distance d. Twenty four co-occurrence features are extracted from the co-

occurrence matrix. In this work, segmentation has been posed as a graph partitioning problem. 

Random objects are picked in different iterations to generate graphs. Segmentation is achieved 

by using these graphs. Finally, multiple results are combined to obtain final segmentation.

Algorithm 2: Ellipse fitting algorithm
For a given set of pixels P for a given cluster L.
Step 1:

Step 2:

Step 3:

Convert the set of pixels P into connected components C = C1, C2,..., CN.
Eliminate the connected components smaller than an area threshold A.
Find ellipses in the ith connected component Ci (Step 2.A - Step 2.E).
Step 2.A: Generate four patterns of simulated ellipses EP1 (0o), EP2 (45o), EP3 (90o), 
EP4(135o) starting with  CurrentMajorAxis and CurrentMinorAxis.
(CurrentMajAxis= MaxMajorAxis and CurrentMinorAxis = MaxMinorAxis in start).
Step 2.B: Locate elliptic primitives EP1, EP2, EP3, EP4 in the current connected 
component Ci one by one.
Step 2.C: Mark the pixels P` corresponding to elliptic primitives.
Step 2.D: Find remaining pixels P*=P- P`.
Step 2.E: Decrement axes values (CurrentMajorAxis and CurrentMinorAxis) by 1 
and continue (Step 2.A) finding ellipses in remaining pixels P* until following 
criteria’s meet:

1. Axes values reach minimum limit. (MinMajorAxis and MinMinorAxis).
2. No unassigned pixels are left i.e. P*=[].

Continue (Step 2) finding ellipses in (i+1)th connected component Ci+1.

Recently, Rathore et al. proposed a robust segmentation technique called modified object-

oriented segmentation (MOSEG) [49]. In MOSEG, the underlying method of segmentation is 



similar to OOSEG [44] with a few enhancements. First, system parameters, which are set 

manually in OOSEG [44], are found separately for images captured at different magnification 

factors using genetic algorithm (GA). Second, epithelial cells, which were modeled as circles in 

previous techniques, are modeled as ellipses. Third, nearly elliptic shapes are also located in the 

images by using Algorithm 2 in order to cater blur. They validated their segmentation results at 

four different magnification factors. Algorithm 2 significantly increases the number of objects 

located in images compared to Algorithm 1 as presented in Figure 5.

(a) (b) (c)
Figure 5: (a) Cluster, objects located by using (b) Circle fitting algorithm (943 pixels), and (c) Ellipse fitting algorithm (1359 pixels)

3.2.2. OO Texture Analysis Based Classification Techniques

Like segmentation, OO texture analysis based techniques work equally well for classification of 

colon biopsy images. In this context, Altunbay et al. proposed  a novel texture features based 

technique [50]. In this work, previously proposed methods of circle fitting [44], and graph

generation [46-48] are employed. A few structural features such as degree, average clustering 

coefficient (CC), and diameter are computed from the object-graph. Seven types of degrees are 

defined for each node. One degree type considers all edges, whereas remaining six degree types 

consider edges of particular colors. Averages of seven degrees for all the nodes constitute seven 

degree based features for a single graph (image). CC is a measure of the connectivity in the 

neighborhood of a node. Four CCs are computed; first CC is computed by catering all nodes 

within the neighborhood, whereas remaining three are computed by considering nodes of unique 

colors. The clustering coefficient of a node n is defined as follows: 
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where dn  is the number of neighbors within the neighborhood, and En is the number of existing 

edges. It is noteworthy that En may be much lesser than dn. Diameter is the longest of the shortest 

paths between any pair of nodes. Seven different diameters are calculated. The first diameter is 

computed by considering all edges, and the other six are computed by considering one particular 

edge type at a time. These 18 features are used to classify given samples by using linear SVM.

Recently, Ozdemir et al. presented a resampling based Markovian model for classification of 

colon biopsy images into normal, low grade and high grade cancer [51]. In this work, perturbed 

samples (images) are generated from the original image. First order discrete Markov model is 

employed to determine the posteriori probabilities of all the classes (normal, low grade, high 

grade) for a given perturbed sample. A class having highest posteriori probability is assigned to 

the perturbed sample. Finally, majority voting is employed to combine the classes of individual 

perturbed samples, and to determine the class of the original test sample. Moreover, Ozdemir et 

al. presented another method of colon cancer detection [52] based on object-graphs. Their idea is 

to make reference graphs [46, 47, 50] of a few images of normal glands, and then search query 

graphs of test images in the reference graphs. Query graphs are searched in the reference graphs 

by placing nucleus node of a query graph on each node of the reference graph. Three most 

similar graphs are found, and then based on the degree of similarity sample type is identified. 

3.3. Hyperspectral Analysis Based Techniques

Hyperspectral analysis based techniques operate on selected spectral bands of colon biopsy 

images, and identify normal and malignant tissues. Hyperspectral data of colon biopsy images is 

collected by using hyperspectral imaging setup that consists of tuned light source [97]. 



In one of the earliest hyperspectral analysis based techniques, Rajpoot et al. segmented the 

hyperspectral colon biopsy images by using wavelet features [53], and provided quite promising 

visual results of segmentation. However, major focus of their research was the classification of 

hyperspectral colon biopsy images. In this connection, Rajpoot et al. have accomplished 

classification of colon biopsy images using multiple kernels of SVM [54]. Hyperspectral image 

cubes having size 1024x1024x20 of colon tissues are acquired from hematoxylin & eosin (H&E)

stained microarray. Overall process comprises four steps: pre-processing, segmentation, feature 

extraction, and classification. In preprocessing, FlexIA, a variant of independent component 

analysis, is applied for dimensionality reduction. In segmentation phase, extracted components 

are fed as input to the k-means clustering to produce 1024x1024 labeled images for each cube. In 

feature extraction, features given in Table 1 are extracted for 16x16 image patches, and for 

resolutions up to 256x256 in order to capture local as well as global details. Detailed information 

about morphological features can be found in a classical book of image processing [91]. 

Table 1: Morphological features

Feature Definition
Area The number of pixels in a region.
Diameter The largest distance between the boundary pixels of an object. 
Extent The ratio of pixels in the region to pixels in the total bounding box.
Orientation The angle between the x-axis and the major axis of the ellipse.
Solidity The ratio of the object area to the convex area.
Eccentricity The ratio of the distance between the foci of the ellipse and its major axis length.
Euler number The number of objects in the region minus number of holes in those objects. 
Major axis The length of the major axis of the ellipse. 
Minor axis The length of the minor axis of the ellipse. 

As a result, 4096 features for each image cube and a total of 45056 features for 11 selected cubes 

have been extracted. 30,000 features have been used for training and the remaining features have 

been used for testing. Gaussian, linear and polynomial kernels of SVM have been used as 

classifiers. Results reveal clear superiority of Gaussian kernel with an accuracy of 87.5%.



In 2006, Masood et al. have used GLCM and morphological features for colon tissue 

classification [55]. Three distinct phases of their technique are segmentation, feature extraction 

and classification. In segmentation phase, dimensionality of 3D cubes of hyperspectral image 

data is reduced using FlexICA. Imaging data is then divided into four clusters of nuclei, 

cytoplasm, glands and stroma by using k-means. Two experiments are conducted. In the first 

experiment, morphological features of shape, size, orientation and other geometrical attributes 

are extracted from 4096 patches (size 16x16) of 4 clusters. Features are then calculated by 

doubling the resolution up to five scales and then concatenating these features. Principal 

component analysis (PCA) [98] and LDA [99] are used to characterize images on the basis of 

morphological features, and a maximum of 84% accuracy is achieved. Second experiment 

focuses on 64x64 image block of each sample. Energy, contrast and homogeneity are calculated 

from GLCM of the block by exploiting all possible options of distance d=1,2 and angle

0 0 0 00 ,45 ,90 ,135  . Four directional features are then concatenated, thereby resulting in an overall 

feature vector of size 24. LOO approach coupled with polynomial SVM is employed for 

classification. The reported classification accuracy is 90%.

Another example of hyperspectral analysis of colon biopsy samples is composite index (CI)

measure based SVM classification technique [56]. In this technique, spatial analysis on one 

selected spectral band of hyperspectral colon biopsy data is performed using circular local binary 

patterns (CLBP). CLBP(r,b) features are computed for 33 different combinations of radius r 

=2,3,…, 12 and number of neighbors b=8,12,16. For finding discriminative CLBP features, three 

measures are used based on separability and compactness of clustering. These measures are 

classification scatter index (C), rand index (R) and silhouette index (S). C is a measure of 

compactness of clusters formed by a set of features. It is calculated using following equation:
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where 
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where N is the total number of points. Dw(i) and Dw(i,k) are the average distances from the ith

point to the other points in its own cluster, and to the points of another cluster k, respectively. 

R measures how similar two clusters are to each other. It is calculated as follows:

1 2 1 2 2 1
2 2

2

1 1 1 1 1 1

1 1
-

2 2 2

2

     

    
     

    
 
 
 

    
g g g g g g

ij ij ij
i j i j j i

N
n n n

R
N

                                         (11)

where N is the number of points in the image. G1 and G2 are the two partitions of data, having g1

and g2 clusters, respectively. nij is the number of points that belong to cluster i and cluster j of g1

and g2, respectively. CI is then calculated as weighted average of C, R, and S as follows:

  c r sCI r C r R r S                  (12)

where rc, rr and rs are correlation coefficients for C, R, and S. CI depicted CLBP (5,8) and CLBP 

(5,12) as the two most promising features. Final classification involves LDA, PCA and SVM.

CLBP (5, 12) has maximum accuracy of 87.5% with SVM, whereas CLBP (5, 8) has maximum 

accuracy of 90.6% with PCA and SVM.

Maggioni et al. presented a classification technique for discriminating normal, pre-cancerous and 

cancerous states of colon [57]. In their work, tissue specimens are stained using H&E technique. 

Hyperspectral data is collected in the range of 440nm to 700 nm, while setting the microscopic 

magnification factor to be 400x. Nuclei are extracted from the given samples, and then based on 



certain spectral features are assigned to one of the three classes. 97.1% classification accuracy 

has been reported by the authors when nuclei have been extracted from all the samples. 

However, a gradual decrease in classification performance has been observed by the authors 

when nuclei have been extracted from smaller subsets of samples. Moreover, Chadded et al.

performed classification of multi-spectral colon biopsy images [58]. In the first phase of this 

work, colon biopsy image is segmented by employing a modified version of classical Snake

algorithm [100]. In the second phase, Haralick features of entropy, correlation, energy, 

homogeneity and contrast are extracted from segmented portion of the image. Finally, images are 

classified into normal and malignant categories based on the extracted features. They achieved 

quite reasonable classification accuracy in discriminating different types of colon tissues. 

Recently, Akbari et al. proposed a method of colon cancer detection [59]. They utilized a broad 

band light source to illuminate the tissue slide and a hyperspectral camera to capture wavelength 

bands from 450 to 950 nm. Twelve histo-pathological slides (three slides each for normal and 

malignant tissues of lung and lymph node) are used in their study. SVM is to classify the given 

tissues. 98.3% specificity and 96.2% sensitivity was observed for colon cancer dataset.

3.4. Miscellaneous Techniques

There are a few other colon biopsy image classification techniques, which are not well 

established as other methods. Therefore, these techniques have been discussed in this section. 

An example of such methods is visual analysis based techniques, which simulate response of 

human receptive field operators i.e. how human perceive the things in present scene and how 

neurons activate accordingly. One such study has exploited a few metrics, based on low level 

process happening in human vision system [84]. Colon images of size 256x256 pixels are 

converted to 8-bit gray scale images. Two features are calculated from these images, namely 

total activation ratio (T) and orthogonal activation ratio (O). These parameters are supposed to 



mimic the neural activation happening in the brain by visualizing organizational structure of 

colon tissues. T is the ratio of maximum orientation response to the total neural activation. O is 

the ratio of maximum orientation response to the relevant orthogonal response. Maximum 

orientation response, used in the parameters, is measured over set of all orientations. 

Experiments proved the parameters to be good distinguishers of normal and malignant samples. 

3.5. Gene Expression Based Techniques

Gene expression profiling based colon cancer detection is an active research area. There are 

usually three types of alterations a gene could undergo i.e. over expression, suppression and gene 

mutation. Such alterations have been exploited for detection of colon cancer, and significant 

research studies have been dedicated to this field. Genes are usually analyzed by using different

variants of microarrays, like, Oligonucleotide and cDNA microarrays. 

3.5.1. Oligonucleotide microarrays

Oligonucleotide microarrays are created by synthesizing a particular Oligonucleotide in a solid 

surface based on an already defined spatial orientation. Oligonucleotide slides are scanned using 

non focal laser that analyzes different probes, and produces tiff images. Images are then analyzed 

to obtain level of gene expressions. Gene expressions are then used for classification.  

To this end, Alon and colleagues employed a clustering algorithm on a dataset of 6500 gene 

expressions from 22 normal and 40 malignant colon tissues in their experiment. They found a set 

of 2000 genes with the highest minimal intensity across samples [60]. These genes are supposed 

to be most discriminative compared to others in the dataset. In 2007, Grade and friends worked 

on gene data of 73 malignant and 30 normal patients, and found 17 discriminative genes amongst 

the data [61]. Moreover, Yajima et al. analyzed gene expression profiles of 43 patients (23 

curable cancer patients – stage A-C, 14 early cancer patients – stage A-B, 5 right-sided cancer 

patients – stage D) in their research study [62]. Gene expression profiles are obtained from the 



feces and peripheral blood. Three (PAP, REG1A, and DPEP1) and six (SEPP1, RPL27A, 

ATP1B1, EEF1A1, SFN, and RPS11) most distinctive genes are identified, respectively, in the 

samples of peripheral blood and feces. This set of nine genes has proven to be able to accurately 

identify 78% of stage A-C, 71% of stage A-B, and 80% of stage D patients. Likewise, Kim et al.

worked on a dataset of 5 serrated adenomas and 5 normal colon mucosa samples, and identified 

124 discerning genes capable of distinguishing the samples in an effective manner [63]. 

Later, Venkatesh et al. proposed another method of colon cancer detection [64]. Kent Ridge 

colon cancer dataset has been used that contains 2000 gene expressions with highest minimal 

intensity across 62 tissues. In this work, dimensionality of data is reduced by using chi-squared 

measure, and 135 out of 2000 genes are selected after ranking. A recurrent neural network with 

context layer, called FEJ neural network, is used for classification. The reported classification 

accuracy is 94.44% for this work that is better than that of other classifiers such as naive Bayes, 

classification and regression tree (CART) and random tree by 10.23% approximately. Kulkarni 

et al. proposed an evolutionary algorithms based method for automatic detection of colon cancer 

[65]. In this work, t-statistic and mutual information are employed for selection of discriminative 

genes amongst a given pool of genes. Genetic programming and decision trees are employed as 

classifiers, and data is divided into normal and malignant samples based on top 10 and top 20 

selected genes. Result revealed that mutual information based feature selection together with 

genetic programming is the most effective solution compared to other combinations.

Recently, Lee et al. proposed a colon cancer detection technique [66]. In this study, newly

proposed neural network-based finite impulse response extreme learning machine (FIR-ELM) 

[101] is employed.  The FIR-ELM algorithm performs classification based on single hidden layer 

feed forward neural network (SLFN). In SLFN, well-known filtering methods, like, finite length 



low-pass filtering, high-pass filtering, and band-pass filtering are employed to train the input 

weights in the hidden layer of SLFN to extract features from the dataset. These features are then 

used to classify the given colon samples. Further, Tong et al. proposed an ensemble of SVM 

classifiers based method of colon cancer detection [67]. In this work, 50 gene expressions are 

selected using top scoring pair method, and linear SVM classifiers are trained on those pairs. GA 

is employed to select such an optimal combination of SVM base classifiers, which yields

maximum possible performance. They investigated the effectiveness of their technique on

several binary class and multi-class gene expression datasets including one on colon cancer. 

They reported classification accuracy of 90.30% with colon dataset.

3.5.2. cDNA microarrays

Like Oligonucleotide, considerable research has been carried out by using cDNA microarrays. In 

1999, Backert et al. have utilized 588 genes, obtained from three classes (normal, mucinous and 

non-mucinous) of colon tissues in their research work [68]. Mucinous and non-mucinous are two 

phenotypes of colon carcinoma which bear morphological as well as genetic differences. Cell 

lines are prepared for each colon category. RNA is extracted from cultured cell lines using 

RNAZol which after being polyadenylated is enriched using magnetic dynabeads, while 

maintaining quality with agarose gel electrophoresis. Duplicate copies of the genes are spotted 

on a nylon membrane. Membrane is then hybridized with labeled cDNA probes, prepared by 

reverse transcription from 1µg polyA+ mRNA. 10 alterations are detected in cell lines of 

malignant colon compared to normal one. The reported classification accuracy is more than 50%. 

Bianchini and colleagues worked on gene expressions of 25 malignant and 13 normal samples,

and identified 584 discriminating genes [70]. Li et al. have used GA to identify discriminative 

genes, and achieved classification accuracy of 94.1% by using KNN classifier [71]. Similarly, 

Chen et al. used multiple kernel SVM (MK-SVM) technique where multiple kernels are 



described as the convex combination of the single feature basic kernels [72]. Algorithm was 

tested on two gene expression datasets: leukemia data and colon data, and more than 90% 

classification success was achieved for both the datasets. Strive continued in this field, and Shon 

et al. proposed working in the frequency domain. They used wavelet transform to reduce feature 

space, and obtained 92% accuracy on colon data with probabilistic neural network (PNN) [73]. 

3.6. Laser Induced Fluorescence (Blood serum analysis) based Techniques

Cancer changes chemical composition of different ingredients in blood serum. Consequently, 

Raman spectrum of malignant serum heavily deviates from its normal counterpart. Techniques, 

based on laser-induced fluorescence and Raman spectroscopy, exploit such differences in blood 

serum and resultant Raman spectra for detection of colon cancer.

In one of such studies, veins of patients are separated in a segregator at a speed of 3000 rot/min 

for 10 min [74]. Then upper serum is sucked, and developed samples are hermitically 

refrigerated. Double monochromator equipped with PMT is used to collect spectra. Samples are

directly exposed to Ar-ion laser source operating at 488nm or 514.5nm and resultant Raman

radiation is put into monochromator. Spectrum is then amplified by using a lock-in amplifier, 

and saved in computer for further use. The reported classification accuracy is 83.5% for a dataset 

of 65 samples. Analysis revealed that normal serum showed three well-distinguished peaks in the 

spectrum, whereas cancerous serum showed no sharp peak. Fluorescence spectroscopy also 

forms basis of an 88% accurate probability based algorithm for detection of colon cancer [75]. 

Specimen collection is quite lengthy; patients are ingested with colyte solution before 

colonoscopy. Distal tip of spectro fluorimeter, surrounded by bundle of nine collection fibers, is 

placed multiple times in light contact with polyp and three spectra are collected for each 

placement. After this, a fluorescence spectrum is collected from a normal area of colon, 

approximately 1 cm far from the polyp. Post-processing is applied on the fluorescence spectra to 



refine it. Fluorescence data is divided into modeling and validation datasets. Modeling data is 

used to develop an algorithm that could discriminate colon tissues. Spectral regions, containing 

the most useful diagnostic information, are identified. Diagnostic parameters for these regions 

are identified, and their probability distribution is used to construct a diagnostic algorithm. The 

algorithm is first applied to the modeling data, and then is blindly tested on validation data to 

determine its accuracy. The reported classification accuracy for normal, hyperplastic and 

adenomatous samples is 97%, 50% and 84%, respectively.

4. Comparison

This section provides a detailed comparison of colon cancer detection categories, and of multiple 

techniques within each category. This section also summarizes equipment and the dataset used 

for validating these techniques. Pros and cons of various techniques are also part of this section.

4.1. Comparison of Equipment and Data Set

Equipment and dataset play a pivotal role in determining overall trustworthiness of any 

technique. Advanced data acquisition equipment and larger datasets usually ensure the reliability 

of a technique. Table 2 summarizes the equipment used in data acquisition, equipment settings 

used for capturing images/spectra, and dataset for the techniques explained in Section 3.

Table 2: Comparison of equipment, dataset and image acquisition

Technique Equipment Dataset
Mag. /

Wavelength (nm)
Staining

Textural Analysis Based Techniques
Esgiar et al. [35] Light Microscope, CCD camera 44 normal, 58 malignant images 40x IH
Esgiar et al. [36] Light Microscope, CCD camera 44 normal, 58 malignant images 40x IH
Esgair et al. [37] Light Microscope, CCD camera 44 normal, 58 malignant images 40x IH
Esgiar et al. [38] Light Microscope, JVC TK-1280E camera 44 normal, 58 malignant images 40x IH
Kalkan et al. [39] ----- 8000 images(patches), (36 patients) ----- H&E
Jiao et al. [40] ----- 30 normal, 30 malignant images ---- ----

Object-oriented Texture Analysis Based Techniques
Tosun et al. [44] Nikon Cool scope Microscope 16 images 5x H&E
Tosun et al. [45] Nikon Cool scope Microscope 16 images 5x H&E
Demir et al. [46] Nikon Cool scope Microscope 72 images (36 patients) 20x H&E
Tosun et al. [47] Nikon Cool scope Microscope 150 images 5x H&E
Simsek et al. [48] Nikon Cool scope Microscope 200 images 5x H&E
Rathore et al. [49] Nikon Cool scope Microscope 100 images (68 patients) 4x, 5x, 10x, 40x H&E
Altunbay et al. [50] Nikon Cool scope Microscope 213 images (58 patients) 20x H&E



Ozdemir et al. [51] Nikon Cool scope Microscope 3236 images (258 patients) 20x H&E
Ozdemir et al. [52] Nikon Cool scope Microscope 3236 images (258 patients) 20x H&E

Hyperspectral Analysis Based Techniques
Rajpoot et al. [54] Nikon Biophot Microscope, CCD camera 32 samples 40x / 450-640 H&E
Masood et al. [55] CRI Nuance Microscope, CCD camera 2 slides 1 400x H&E
Masood et al [56] Nikon Biophot Microscope, CCD camera 32 samples 40x /440-700 H&E
Maggioni et al.  [57] Nikon Biophot Microscope, CCD camera 59 samples 440-700 H&E
Chadded et al. [58] ----- 45 images 500-650 -----
Akbari et al.  [59] Macroscopic optical histopathology 12 slides 450-950 -----

Gene Analysis Based Techniques
Alon et al. [60] Oligonucleotide microarrays 65000 genes(22 normal, 40 malignant) ----- -----
Grade et al. [61] Oligonucleotide microarrays 17 genes (30 normal, 73 malignant) ----- -----
Yajima et al. [62] Oligonucleotide microarrays Stages: A-C (23), A-B (14), D (5) ----- -----
Kim et al. [63] Oligonucleotide microarrays 124 genes (5 normal, 5 malignant) ----- -----
Venktesh et al. [64] Oligonucleotide microarrays 2000 genes (22 normal, 40 malignant) ----- -----
Kulkarni et al. [65] Oligonucleotide microarrays 2000 genes (22 normal, 40 malignant) ----- -----
Lee et al. [66] Oligonucleotide microarrays 2000 genes (22 normal, 40 malignant) ----- -----
Tong et al. [67] Oligonucleotide microarrays 2000 genes (22 normal, 40 malignant) ----- -----
Backert et al. [68] cDNA microarrays 588 genes ----- -----
Bianchini et al. [70] cDNA microarrays 584 genes (25 malignant, 13 normal) ----- -----

Laser-Induced Fluorescence Based Techniques

Li et al. [74] Double Monochromator equipped with PMT 65 patients
520-640,540- 560,
500-620 /510- 530

-----

Cothren  et al. [75] Spectro Fluorimeter with 9 collection fibers 172 samples 400- 700 -----
1= each slide has several microdots, ----- = no information available or the entry is irrelevant

4.2. Performance Comparison

It is difficult to compare different techniques as each one of them uses its own dataset and 

equipment. However, we have compared techniques within each category based on a few 

parameters such as accuracy, dataset and its acquisition method, cancer detection and grading 

capability, and parameter tuning. A brief comparison of different cancer detection categories is 

in Table 3. Table 4 provides detailed comparison of colon cancer detection techniques within 

each category. Pros and Cons of individual techniques have been highlighted in Table 5. 

Table 3: Comparison of colon cancer detection categories

Object Oriented
Texture analysis

Laser-
Induced

Texture 
Analysis

Spectral 
Analysis

Genes 
analysis

Visual 
Analysis

Accuracy
99(segmentation), 

92.21(classification)
88 96.67 97.10 98.33 ----

Equipment (Easily Available) √ × √ × × √

Ease of Use for Histopathologists √ × √ × × √

Cancer Detection -- √ √ √ √ √

Cancer Grading ×          -- × × -- ×

Automatic Parameter Tuning --          --           --           -- √ √

                   √=fully satisfy, --=partially satisfy, x=do not satisfy criteria, Accuracy of the best performing technique within each category is given.

Accuracy is the most promising parameter to measure effectiveness of a technique. Table 3

demonstrates low variability in terms of accuracy. However, OO texture analysis based 



techniques [44-52] go ahead of others. Primary reason of better accuracy is incorporation of 

background knowledge about tissues organization into the segmentation/classification process. 

Contrary, laser-induced fluorescence based techniques [74-83] have smaller accuracy, because 

equipment is quite delicate and a minute human error leads to wrong results. Texture [35-41], 

spectral [53-59], and gene analysis based techniques [60-73] show moderate accuracy. Second 

factor is availability of equipment. Nikon Coolscope microscope [102] and CCD cameras have 

been used in visual analysis and texture analysis based techniques. This equipment is easy to use,

and is easily accessible to histopathologists. Fluorescence, gene analysis and hyperspectral 

analysis based techniques are hard to practice because equipment is quite delicate and is not 

easily accessible to histopathologists. Cancer detection and grading is another factor. All the 

techniques have capability to detect cancer except OO texture analysis based segmentation 

techniques [44-49]. There is no cancer grading capability in different techniques except the 

detection of two phenotypes in Backert et al. work [68], hyperplastic and adenomatous stages in

Cothern et al. work [75], and 4 Duke’s stages in Yajima’s work [62]. Parameter tuning is a major 

challenge in OO texture, fluorescence, simple texture and spectral analysis based techniques. 

Most of the techniques within these categories need manual/partial adjustment of parameters.

Contrary, gene and visual analysis based techniques do not need parameter tuning.

4.2.1. Comparison: OO Texture based Techniques

Table 4 demonstrates that OO texture analysis suits to the segmentation of colon biopsy images 

as depicted by the superior segmentation results compared to classification. Secondly, within the 

segmentation results, graph based segmentation [46-48] seems better compared to object based 

segmentation [44, 45]. Possible reason of better accuracy is that graphs and resultant features 

represent tissue components more realistically compared to simple object/pixel based features. 

Except initial two techniques [44, 45] in this category, all other techniques have been tested on 



larger datasets. Data acquisition is same because samples in all the techniques have been stained 

using H&E technique, and Nikon Coolscope has been used for capturing images. Segmentation 

techniques [44-49] only segment images, whereas classification techniques classify samples into 

different classes. There is no cancer grading capability in either of the techniques. Parameter 

tuning is manual in a few techniques [44, 48]. For instance, several parameter such as circle 

radius, window size, and merge threshold are manually adjusted in OSEG [44]. Conversely, 

parameter tuning is partially automatic in others [45-47, 50-52]. In these techniques, authors 

have used separate dataset for finding optimal values of parameters. There is only one technique 

[49] that provides automatic adjustment of parameters through GA.

Table 4: Comparison of colon cancer detection techniques

Accuracy Data Acquisition/
Dataset

Cancer 
Detection

Cancer Grading Parameter 
Tuning

Textural Analysis Based Techniques
Esgiar et al. [35] 90.20% Smaller dataset Yes No Manual tuning
Esgiar et al. [36] 85.00% Smaller dataset Yes No Manual tuning
Esgiar et al. [37] 94.10% Smaller dataset Yes No Manual tuning
Esgiar et al. [38] 94.10% Smaller dataset Yes No Manual tuning
Kalkan et al. [39] 75.15% Larger dataset Yes No Partially automatic
Jiao et al. [40] 96.67% Smaller dataset Yes No Fully automatic

Object-Oriented Texture Analysis Based Techniques
Tosun et al. [44] 94.80% Smaller dataset No No (segmentation) Manual tuning
Tosun et al. [45] 86.50% Smaller dataset No No (segmentation) Partially automatic
Demir et al. [46] 90.62% Smaller dataset No No (segmentation) Partially automatic
Tosun et al. [47] 99.00 % Larger dataset No No (segmentation) Partially automatic
Simsek et al. [48] 94.90% Larger dataset No No (segmentation) Manual tuning

Rathore et al. [49]
76.99(4x),85.77(5x), 

88.98(10x),76.54(40x)
Larger dataset No No (segmentation)

Fully automatic 
(GA)

Altunbay et al. [50] 82.65% Larger dataset Yes No Partially automatic
Ozdemir et al. [51] 90.66% (average) Much larger dataset Yes No Partially automatic
Ozdemir et al. [52] 92.21% Much larger dataset Yes No Partially automatic

Hyperspectral Analysis Based Techniques

Rajpoot et al. [54] 87.5%
High resolution data cube,
Visible range: 450-640nm

Yes No Manual Tuning

Masood et al. [55] 90%
Short process, 
common staining method

Yes No Fully Automatic

Masood et al [56] 90.6%
Low resolution data cube,
Visible range: 440-700nm

Yes No Fully Automatic

Maggioni et al. [57] 97.1% 440-700nm Yes No Fully Automatic
Chadded et al. [58] ----- 500-650nm Yes No Partially automatic
Akbari et al.  [59] 97% 450-950nm Yes No -----

Gene Analysis Based Techniques

Venktesh et al.[64] 94.4%
Kent-Ridge data set, 
larger data set

Yes No Fully Automatic

Backert et al. [68] >50%
Data itself prepared,
lengthy process,
data set is small

Yes Detects 2 phenotypes Fully Automatic

Kulkarni et al. [65] 98.33 Kent-Ridge data set, Yes No Partially automatic



larger data set

Lee et al. [66] 76.85
Kent-Ridge data set, 
larger data set

Yes No Partially automatic

Tong et al. [67] 90.03%
Kent-Ridge data set, 
larger data set

Yes No Partially automatic

Laser-Induced Fluorescence Spectroscopy Based Techniques
Li et al. [74] 83.50% Small data set Yes No Fully Automatic
Cothren  et al. [75]

88% Large dataset Yes
Detects hyperplastic 

and adenoma
Manual tuning

----- = no information available or the entry is irrelevant

4.2.2. Comparison: Spectral Analysis based Techniques

Hyperspectral analysis based techniques share some common advantages and disadvantages, and 

are poles apart in various respects. Such similarities and differences have been presented in 

Table 4. All the techniques yield reasonable classification results. However, Maggioni’s work 

[57] leads others in terms of accuracy. This is primarily due to larger visible range, established to 

acquire hyperspectral data. Like many others, all the hyperspectral analysis based techniques 

only distinguish normal and malignant samples, and are silent about cancer grading. 

4.2.3. Comparison: Gene Expression based Techniques

Ultimate aim of gene expression analysis based techniques is to classify gene expression profiles 

into normal and malignant categories. These techniques usually select multiple gene expressions 

among a given pool to classify given colon samples. Researchers have tried to find out such 

common genes which are significantly expressed in a large number and diverse colon cancer 

samples. In this context, Pamplona et al. have investigated the discerning capability of 31 

different gene expressions in 11 genes based colon datasets [103]. But, they could find only one

gene that differentiates samples in 11 given datasets with more than 65% classification accuracy. 

Therefore, they concluded that there is no single gene which can distinguish malignant samples 

in diverse datasets. Rather, a combination of genes should be used. Among the gene analysis 

based techniques presented in Section 3.5, Oligoneuclotide based techniques are rich in terms of 

dataset. Larger dataset is used in these techniques. On the other hand, cDNA based techniques

have been tested on smaller datasets. All the techniques have cancer detection capability. There 



are only two techniques which assign cancer grades; Backert’s work [68] that divides samples 

into 2 phenotypes, and Yajima’s work [62], which assigns quantitative cancer grades according 

to Duke’s scale. Further, there is no manual adjustment of parameters in either of the techniques. 

4.2.4. Comparison: Texture Analysis based Techniques

These techniques have exploited texture features for detection of colon cancer. The work of Jiao

et al. [40] enjoys a slight performance advantage over others. Possible reason of higher accuracy 

is the use of compact and information rich hybrid feature vector. All the techniques [35-41]

classify colon samples into normal and malignant classes but none of them distinguishes cancer 

grades. Dataset is smaller in a few studies [35-38, 40], and vice versa [39, 41]. Kalkan et al. work 

[39] is partially automatic, and  Jiao et al. technique [40] is fully automatic. On the other hand, 

remaining techniques need manual adjustment of system parameters such as sub-image size and 

area threshold needs to be manually adjusted, respectively, in [38] and [35].

4.2.5. Comparison: Laser-Induced Fluorescence based Techniques

These techniques analyze the Raman spectrum of blood serum. Three well-distinguished peaks 

are indicator of normal blood serum, whereas irregular peaks or absence of peak shows cancer. 

There is small difference of accuracy in both the techniques. Primary reasons of better accuracy

in spectro fluorimeter based technique [75] are the post-processing steps. Dataset in spectro 

fluorimeter based technique [75] is large (172 samples), but data acquisition process is pretty

lengthy and delicate. Placement and removal of distal tip in light contact with the polyp needs 

extreme care. Contrary, dataset is smaller (65 patients) in [74] but data acquisition is simple and 

straightforward. Cancer detection process is totally automatic in monochromator based technique 

[74]. However, optimal values of system parameters are calculated by analyzing their probability 

distribution in [75]. Both the techniques detect normal and malignant samples. However, spectro 

fluorimeter based technique distinguishes between two pre-cancerous stages as well.



Table 5: Pros and cons of colon cancer detection techniques

Technique Pros Cons
Textural Analysis Based Techniques

Esgiar et al. [35]
-Simple and straightforward.
-Quite common statistical parameters are exploited.
-Easy to use for histopathologists.

-Quite delicate and lengthy data acquisition method.

Esgiar et al. [38]
-Simple and straightforward parameters are used.
-Quite less computational complexity.

-Easy to use for histopathologists.

-Little improvement because fractal dimensions are 
highly correlated with entropy and correlation.

Jiao et al. [40]

-Simple to use for histopathologists.
-Simple and straightforward approach; 
-Image data is easily available in hospitals.
-Small and compact feature set is used. 

-Smaller dataset. 

Object oriented Texture Analysis Based Techniques

Tosun et al. [44]
-Simple to use for histopathologists.
-Image data is easily available in hospitals.

-Can only segment heterogeneous images of 5x 
microscopic magnification.
-Change in magnification degrades the results.
-Parameters are manually adjusted.
-Smaller data set.

Tosun et al. [45]

-Simple to use for histopathologists.
-Image data is easily available in hospitals.
-Manual adjustment of parameters has been eliminated to a 
huge extent.

-Can only segment heterogeneous images of 5x 
microscopic magnification.
- Change in magnification degrades the results.
-Smaller dataset.

Demir et al. [46]

-Simple to use for the histopathologists.
-Image data is easily available.
-Introduced graphs for the segmentation of colon biopsies 
for the first time.

-Can only segment images of 20x microscopic 
magnification.
-Partial automation of system parameters.
-Computationally expensive.

Tosun et al. [47]

-Simple to use for histopathologists.
-Much accurate segmentation (99%) with no restriction on 
number of segmented regions.

-Can only segment heterogeneous images of 5x 
microscopic magnification.
- Change in magnification degrades the results.
-Computationally expensive.

Rathore et al. [49]

-Simple to use for the histopathologists.
-Applicable to four different magnification factors. 
-Parameter tuning is totally automatic through GA. 
-Independent of orientation of slide on microscope while 
capturing images.

-Computationally expensive as computation of 
parameters through GA, and ellipse finding in four 
angular directions take considerable time.

Hyperspectral Analysis Based Techniques

Rajpoot et al. [54]
-Caters local as well as global level changes.
-Simple and straightforward.

-Independent components are used instead of full 3D data 
which limit the accuracy.
-Spectral data is not easily available to histopathologists.

Masood et al. [55]
-Simple and straightforward approach. 
-Dimensionality reduced compact spectral data is used. 
-Compact feature vector is used.

-Spectral data is not easily available to histopathologists.

Masood et al [56]

-CLBP features, along with three clustering measures, are 
used which serve as good discriminators of samples.
-Much smaller and compact feature vector.
-Simple and straightforward.

-Only one band is used compared to full 3D data which 
limits accuracy of the scheme.
-Spectral data is not easily available to histopathologists.

Maggioni et al. [57]

-Simple and straightforward technique.
-Spectral features are used which serve as good 
discriminators of colon samples.
-Computationally tractable.

-Spectral data is not easily available to histopathologists.

Chadded et al. [58]
-Introduced valuable modification to the Snake algorithm.
-Only three features are used to classify the segmented 
regions, which are much lesser than many other schemes.

-Snake needs to be initially demarcated.
-Dataset is quite small.
-Quantitative result and comparisons are not provided.

Akbari et al. [59]
-Simple and straightforward approach.
-Performs equally well for lung and colon cancer.
-No complex parameters are involved.

-Dataset is quite small.

Gene Analysis Based Techniques
Venktesh et al. [64] -Reduced feature set has been used.

-Comprehensive gene expression database has been used.
-Synthesis of Oligonucleotide is lengthy process.
-Difficult to practice for histopathologists.

Backert et al. [68] -Grading capability of 2 phenotypes of carcinoma.
-Difficult to practice for histopathologists.
-Lengthy and delicate data acquisition process.

Kulkarni et al. [65]
-Reduced feature set has been used.
-Comprehensive gene expression database has been used.
-Benefits from capabilities of evolutionary algorithms.

- Difficult to practice for histopathologists.
-Computationally expensive. 



Lee et al. [66]
-Comprehensive gene expression database has been used.
-Time series analysis serves well for colon dataset.
-Technique performs equally well for given two datasets.

- Difficult to practice for histopathologists.
- Weight updation is computationally expensive.
- Selection of number of neurons for hidden layer is a 
major challenge. 

Tong et al. [67]
-Comprehensive gene expression database has been used.
-Performance has been enhanced due to ensemble. 

- Difficult to practice for histopathologists.
- Computationally expensive.

Laser-Induced Fluorescence Spectroscopy Based Techniques

Li et al. [74]
-Easy to detect peaks and classify images for pathologist.
-Amplified spectrum is used.
-Several wavelength ranges are observed.

-Quite complicated data acquisition.
-Equipment is not easily available to histopathologists.

Cothren  et al. [75]

-Extensive data corrections steps are applied before further 
processing.
-Average spectra are used instead of single spectra.
-Detects two stages of hyper plastic and adenomatous.

-Quite complicated data acquisition.
-Equipment is not easily available to histopathologists.

Visual Analysis Based Techniques

Todman et al. [85]
-Simple to use.
-Quite less computational complexity.

-Not reliable.
-No quantitative results have been provided.

5. Experimental Evaluation

In this section, most of the techniques presented in Section 3 have been evaluated. The 

techniques within different categories work in different domains, therefore, it is not possible to 

test all of them by using similar dataset. However, techniques within each category have been 

evaluated on the same dataset. In this connection, three datasets have been prepared/acquired, 

and the different techniques have been implemented in Matlab.

5.1. Dataset

Dataset-I has been used to assess gene expression based techniques. Dataset-II has been used to 

test OO texture analysis based segmentation techniques, and dataset-III has been used to test 

texture, visual and OO texture analysis based classification techniques.

Dataset-I: This data comprises two standard colon cancer datasets (Kent Ridge dataset [104] and 

BioGPS dataset [105]). Kent Ridge dataset contains 62 samples (22 normal and 40 malignant).

Dimensionality of Kent Ridge dataset is 2000. BioGPS dataset comprises 131 samples (37 

normal and 94 malignant). Dimensionality of BioGPS dataset is 3. 

Dataset-II: This dataset comprises100 biopsy images taken from 68 randomly selected patients

from the pathology department of Rawalpindi Medical College. Biopsy samples, comprising 5–6 

µm thick tissue section, have been stained with H&E. Nikon Biophot microscope has been used 



with four different magnification factors (4x, 5x, 10x, 40x) for capturing images. Each image has 

a spatial resolution of 800x600. Images comprise normal, malignant or both tissue types.

Dataset-III: Dataset-III has been prepared by capturing 174 RGB images under lens 

magnification factor of 10x from the histopathological slides of 68 patients (as used in dataset-

II). Out of 174 images, 92 are malignant and 82 are benign. The images have varying size 

starting from minimum of 67x160 to a maximum of 704x376.

5.2. Segmentation experiment

The segmentation experiments have been performed on the dataset-I and visual results have been 

obtained for various colon biopsy image segmentation techniques, as presented in Figure 6.

(a1) (a2) (a3)

(b1) (b2) (b3)
Figure 6: Segmentation results for two images using (a1-b1) OSEG [44], (a2-b2) GRLM [47], and (a3-b3) Multilevel segmentation [48]

Figure 6 (a1 –a3) and (b1- b3), respectively, represent normal and malignant colon samples 

captured at 40 x magnification factor. It is clearly evident that multi-level segmentation based 

technique [48] clearly outclasses the remaining two. This is largely due to its ability to ensemble 

diverse segmentation results achieved by segmenting diverse graphs. Furthermore, we have 

quantitatively evaluated the segmentation results using well-known performance measures such 

as accuracy, sensitivity, specificity, MCC and F-Score.



Accuracy is a measure of overall usefulness of the classification technique. It can be calculated 

using following equation:

100


 
  

TP TN
Accuracy

TP FP TN FN
                                                                                                       (13)

where true positive (TP), true negative (TN) are the number of correctly classified positive and 

negative samples. False positive (FP) and false negative (FN) are incorrectly classified samples. 

Sensitivity and specificity, respectively, are used to calculate ability of a classifier to recognize 

patterns of positive and negative classes. They can be obtained using the following expressions:



TP

Sensitivity
TP FN

                                                                                                                          (14)




TN
Specificity

TN FP
                                                                                                                         (15)

MCC serves as a measure of classification in binary class problems. Its value ranges from -1 to 

+1. +1 means classifier is always right, whereas -1 means classifier always commits a mistake. 0

means random prediction. MCC can be calculated using the following expression:

(( )( )( )( ))

  


   
TP TN FP FN

MCC
TP FN TP FP TN FN TN FP

                                                                                  (16)

F-score is a weighted average of precision and recall values. It can be calculated by using 

expression (19). Its value ranges between 0 and 1, where 0 is the worst score and 1 is the best.

TP
Precision = 

TP+ FP                                                                                                                            (17)
TP

Recall
TP FN


                                                                   (18)

2


 
Precision Recall

Fscore
Precision+Recall

                                                                                                         (19)

Quantitative results for various segmentation techniques have been presented in Table 6.

Table 6: Quantitative results for object oriented texture analysis based segmentation techniques

Colon biopsy image 
segmentation Technique Ref.

Performance measures
Accuracy Sensitivity Specificity MCC F-Score

Tosun et al. [44] 81.29±1.23 0.94±0.01 0.73±0.02 0.80±0.03 0.79±0.01
Tosun et al. [45] 82.45±1.11 0.96±0.02 0.78±0.03 0.85±0.01 0.83±0.02
Tosun et al. [47] 83.50±1.02 0.93±0.02 0.80±0.03 0.82±0.02 0.81±0.01
Simsek et al. [48] 85.77±0.97 0.88±0.01 0.85±0.01 0.86±0.02 0.83±0.02



Results in Table 6 reinforce the conclusions drawn from Figure 6, wherein we see that multi-

level partitioning based technique [48] outclasses other techniques [44, 45, 47] in terms of most 

of the performance evaluation parameters.

5.3. Classification experiment

Likewise, the classification experiments have been conducted on the aforementioned datasets 

(Dataset-II and Dataset III) and performance of most of the classification techniques has been 

evaluated. Visual classification result of five images (Figure 7) are given in Table 7.

(a) (b) (c) (d) (e)
Figure 7: (a, b) Normal and (c, d, e) malignant colon biopsy images 

Table 7: Classification results for images given in Figure 7 by using various colon classification techniques(N=normal, M=malignant)

Classification
technique

Ref.
Labels

Fig 7 (a) Fig 7(b) Fig 7(c) Fig 7(d) Fig 7(e)
Esgiar et al. (KNN) [35] N N N M N
Esgiar et al. (LDA) [35] N M M N M
Esgiar et al. [36] M N M N M
Esgiar et al. [37] N N M M M
Esgiar et al. [38] N N M M M
Kalkan et al. [39] N N M M M
Jiao et al. [40] N N M N M
Todman et al. [85] N N M N N

Table 7 reveals that image in Figure 7 (d) is misclassified by most of the techniques. This might 

be due to the fact that image presents pre-cancerous stage, in which tissues are slightly deformed. 

So, it is hard to detect cancer. Quantitative results for classification have been given in Table 8.

Table 8: Quantitative results for various colon classification techniques (KR = Kent Ridge dataset, BG = BioGPS dataset)

Colon classification technique Ref.
Performance measures

Accuracy Sensitivity Specificity MCC F-Score
Texture 
analysis 
based

Esgiar et al. (KNN) [35] 77.75±1.02 0.88±0.01 0.71±0.01 0.58±0.02 0.76±0.01
Esgiar et al. (LDA) [35] 86.00±1.32 0.89±0.09 0.95±0.04 0.54±0.07 0.84±0.12
Esgiar et al. [37] 73.18±1.78 0.82±0.02 0.67±0.02 0.48±0.03 0.71±0.02



Esgiar et al. [38] 73.18±1.78 0.82±0.02 0.67±0.02 0.48±0.03 0.71±0.02
Kalkan et al. [39] 83.22±1.01 0.80±0.01 0.81±0.04 0.85±0.01 0.79±0.03
Jiao et al. [40] 81.15±0.65 0.83±0.01 0.80±0.02 0.81±0.02 0.82±0.03

Gene 
expression
Analysis
based

Venkatesh et al. (KR) [64] 94.10±1.54 0.93±0.02 0.94±0.03 0.91±0.01 0.90±0.02
Venkatesh et al. (BG) [64] 96.62±1.23 0.97±0.01 0.97±0.02 0.98±0.01 0.97±0.01
Kulkarni et al. (KR) [65] 98.33±1.00 0.99±0.01 0.98±0.01 0.97±0.02 0.97±0.02
Kulkarni et al. (BG) [65] 98.45±0.95 0.99±0.01 0.99±0.01 0.98±0.01 0.98±0.02
Lee et al. (KR) [66] 76.85±1.56 0.77±0.05 0.79±0.04 0.70±0.03 0.74±0.03
Lee et al. (BG) [66] 80.23±2.13 0.79±0.04 0.81±0.05 0.77±0.02 0.81±0.01
Tong et al. (KR) [67] 90.32±1.11 0.82±0.02 0.95±0.02 0.79±0.03 0.86±0.02
Tong et al. (BG) [67] 93.55±1.28 0.86±0.01 0.98±0.01 0.86±0.02 0.90±0.02
Li et al. (KR) [71] 89.01±1.02 0.88±0.02 0.90±0.01 0.87±0.03 0.88±0.02
Li et al. (BG) [71] 91.25±1.03 0.89±0.01 0.93±0.02 0.90±0.01 0.88±0.02

Miscellaneous Todman et al. [85] 88.32±1.59 0.88±0.02 0.86±0.03 0.90±0.01 0.83±0.05

6. Conclusion

Traditionally, colon cancer is diagnosed using microscopic tissue analysis. However, the process 

is subjective, and may lead to inter-observer variation in grading. Further, factors such as 

tiredness, experience and workload of pathologist also affect the diagnosis. These vulnerabilities 

in the manual process result in need of an automatic colon cancer detection mechanism. In this 

context, several colon cancer detection techniques have been proposed. In this survey, we have 

divided these techniques into five major categories: OO texture, spectral, spatial, basic texture, 

serum, and gene analysis based techniques. A larger subset of these techniques has been

summarized in this paper. Additionally, an extensive comparison of various colon cancer 

detection categories and of multiple techniques within each category has also been provided. 

Most of the techniques have been implemented in Matlab, and tested on unified dataset. Analysis 

reveals that simple texture and OO texture analysis based techniques are better compared to other 

approaches owing to their ease of use for histopathologits, easy access to the equipment, and 

superior results. Though our preliminary survey is quite promising, there is still a lot more to be

done. First of all, a few other performance measures may be introduced in the comparison. 

Second, there should be a separate study focusing on parameter tuning of these techniques. 
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