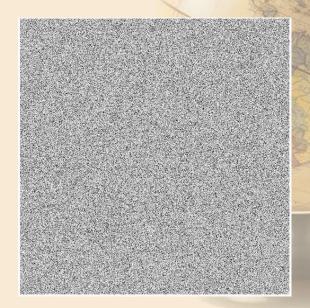
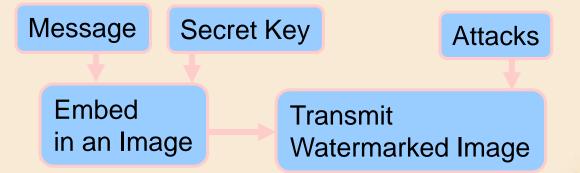
"Intelligent Extraction of a Digital Watermark from a Distorted Image"

By:


Dr. Asifullah Khan, Signal And Image Processing Lab, Mechatronics, GIST.

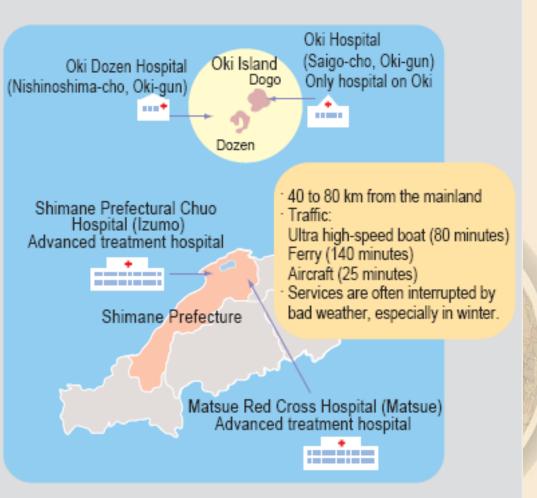
Digital Watermarking



Digital Watermarking (Embedding and Extraction)

Secret Key

Received Watermarked Image Extract the Embedded Message


Medical Image Watermarking (Applications)

Remote Medical Treatment System for Isolated Islands[1]

Patient's radiological images are transferred to advanced Mainland hospitals

Teleconferencing

However, what about Protection, authentication, and annotation of the medical information, etc., ?

Channel Noise, and intentional attacks, such as removal/swapping of Patient's ID

Watermarking applications and Conceivable Attacks

- Different watermarking applications, usually, faces different types of attacks.
- E.g., attacks encountered in Print-to-Web technology are usually different than faced in protecting shared medical information.
- Similarly, attacks related to Broadcast monitoring may be different than Secure Digital camera based applications.
- Even, in most of the real world watermarking applications, we face a sequence of attacks.
- This raises the importance of intelligent and adaptive strategies in Watermarking.

Machine Learning

- Machine learning is concerned with the development of techniques that allow computers to "learn"
- Machine Learning based Schemes gain knowledge through their training phase.
- Once, a trained model is achieved, its performance is evaluated on novel samples
- Examples of Machine Learning techniques are Support vector Machines, Artificial Neural Networks, Decision Tress, Evolutionary Algorithms, etc.

Introduction

• Digital Watermarking

Watermarking is regarded as the practice of Imperceptibly altering data to embed information about the same data.

Digital Content: Watermarking could be performed on 3D Shapes, printed documents, text, audio, image, video, etc.

Domains: Watermarking could be performed in Spatial, DCT, FFT, Wavelet, etc domains

- Applications of watermarking:

- Ownership assertion
- Data Authentication
- Finger Printing
- Broadcast Monitoring, etc.

Introduction contd..

Main Categorization :

- Robust Watermarking:
 - Watermarks adhere to the image even after it has been attacked
 - Integrity of the watermark itself has to be withheld

– Fragile Watermarking:

- Watermarks are designed to be destroyed with the slightest modification in the cover work
- Integrity of the work has to be withheld

Main Characteristics of Watermarking:

• Imperceptibility, Robustness, Capacity, and Security.

Attacks on a watermarked image

 A watermark could be destroyed, removed or stopped from its intended purpose by an attack, which might be intentional or unintentional.

- Attack Categorization:

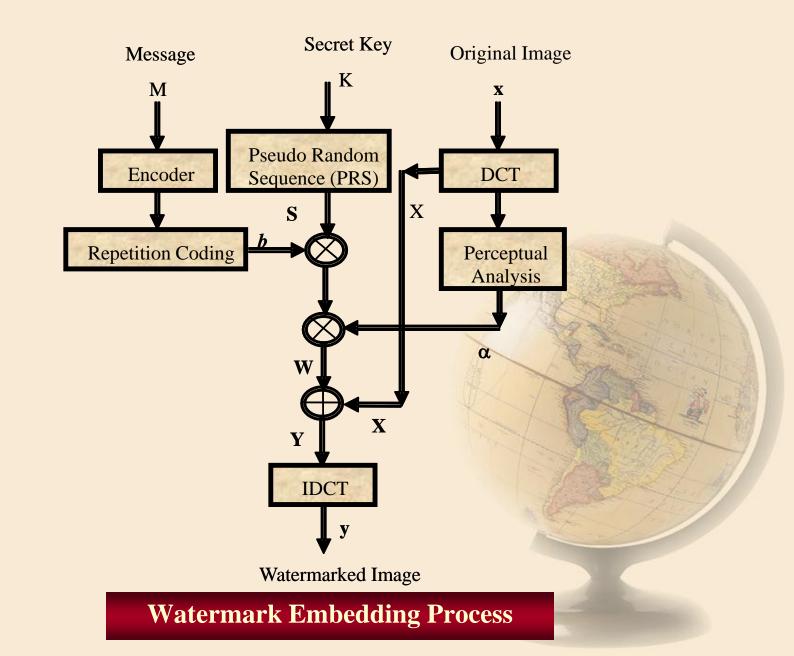
- No Standard Watermark Attack categorization:
- Recently, robustness and security based attacks are dealt with separately.
- For example, robustness based attacks could be:
 - Compression
 - Geometric transformations (horizontal/vertical flipping, rotation, cropping, and scaling)
 - Enhancement techniques (sharpening, low pass filtering, gamma correction, histogram modification)
 - Noise addition

Security based attacks refer to gaining knowledge about the secrets of the watermarking systems, e.g. Key.

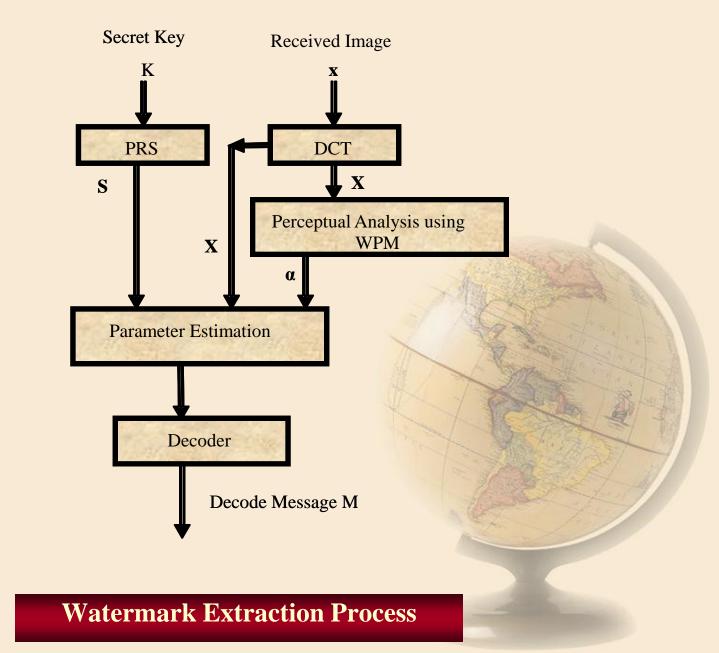
Relevant Research

- Machine Learning (ML) based Watermarking Schemes.
- Fu et al. [1] utilize SVM for optimal detection of a watermark.
- Bounkong et al [2] have proposed independent component analysis based watermarking.
- However, these approaches do not consider the presence of attacks during the training phase and thus are not adaptive.
- In addition, watermarking approaches that do not exploit ML techniques, generally, use simple Threshold Decoding (TD)
- And thus are also not adaptive towards the attack on the watermark [3-4].

Relevant Research contd.


- These approaches neither consider the alterations that may incur to the features
- and nor exploit the individual frequency bands.
- We exploit the individual frequency bands by employing ML models.
- In this way, we are able to gain knowledge pertaining to the distortion
- that might have incurred varyingly on the different frequency bands due to the attack.
- Therefore, our main emphasis is on gaining and exploiting knowledge about distortion.

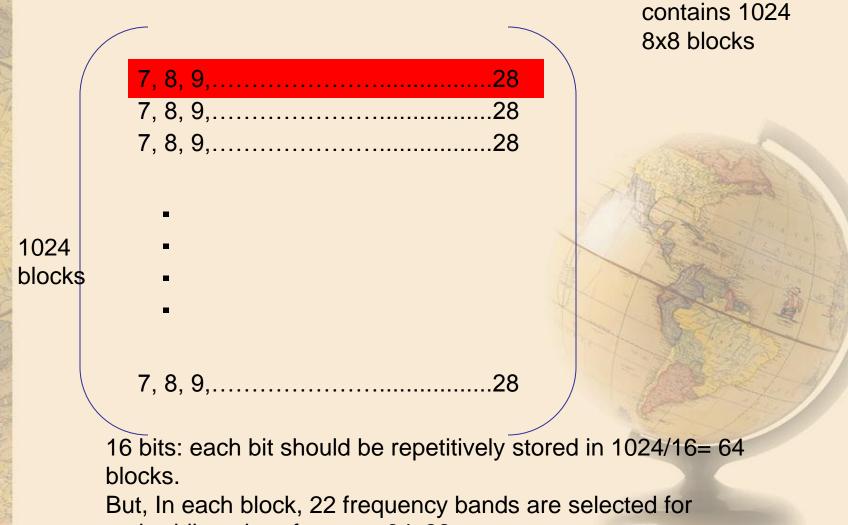
Introducing a DCT based watermarking Scheme


- We first briefly describe a WM scheme proposed by Hernandez et al.
- This WM approach is used as a base in our proposed scheme, and is extended by using ML techniques.
- Hernandez's WM scheme models the distribution of DCT coefficients in each frequency band as Generalized Gaussian.
- Thereafter, they employ maximum likelihood based estimation to extract the watermark.
- Once the sufficient statistics of the estimation process are computed, a simple threshold is used to decide about the class of bit; $b \in [-1,1]$

 $\hat{b}_i = \operatorname{sgn}(r_i) \qquad \forall i \in \{1, 2, \cdots, N\}$

DCT based Watermarking Scheme

DCT based Watermarking Scheme contd.


Indices of DCT coefficients in zigzag order of an 8x8 block

0	1	5	6	14	15	27	28
2	4	7	13	16	26	29	42
3	8	12	17	25	30	41	43
9	11	18	24	31	40	44	53
10	19	23	32	39	45	52	54
20	22	33	38	46	51	55	60
21	34	37	47	50	56	59	61
35	36	48	49	57	58	62	63

64 Frequency bands: Only 22 (7-28) are selected for watermark embedding

Modelling of selected DCT coefficients in zigzag order

256x256 image

embedding, therefore, G_i =64x22

Watermark Embedding and Decoding contd.

The set of coefficients which are sufficient statistics for the ML hidden information decoding process

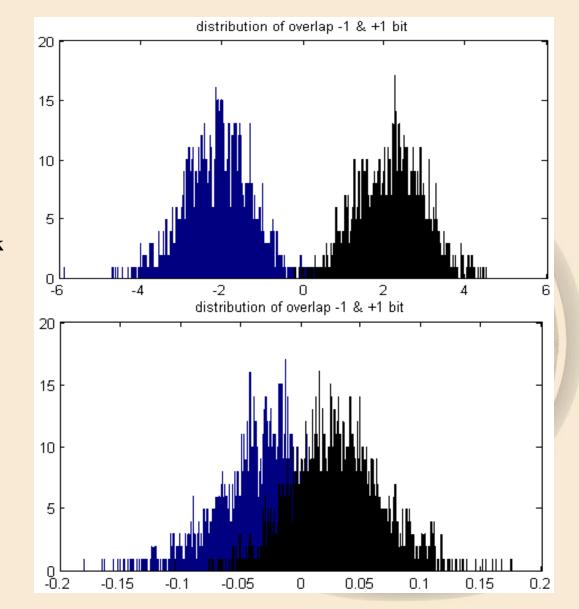
$$r_{i} \stackrel{\Delta}{=} \sum_{k \in G_{i}} \frac{\left| Y[k] + \alpha[k] S[k] \right|^{c[k]} - \left| Y[k] - \alpha[k] S[k] \right|^{c[k]}}{\sigma[k]^{c[k]}}$$

- Where G_i denotes the sample vector of all DCT coefficients in different 8×8 blocks that correspond to a single bit *i*
- For binary antipodal signal, the bits are estimated as:

$$\hat{b}_i = \operatorname{sgn}(r_i) \qquad \forall i \in \{1, 2, \cdots, N\}$$

Problem Identification

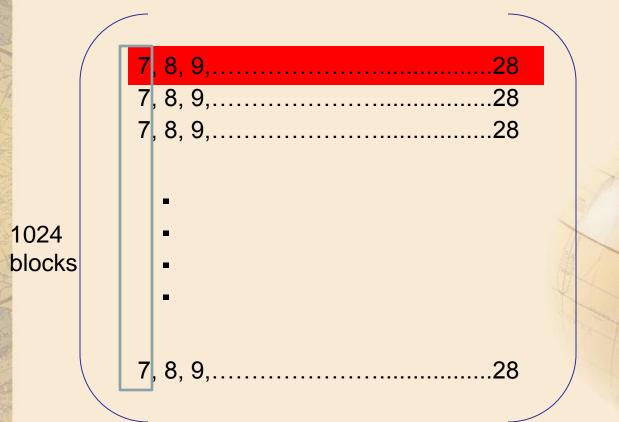
Distribution of sufficient statistics of the maximum likelihood based decoding process


 $\hat{b}_i = \operatorname{sgn}(r_i)$

No attack

Attack: Gaussian Noise
 of σ =10

 Simple threshold fails to decode


 ML based decoding is used to exploit its learning capabilities

Problem Identification and Remedy

- So, firstly, we expected that Machine learning approach, such as, SVM would be better to classify such Data.
- This was expected due to the ability of SVM and ANN to transform a nonlinearly-separable problem into a linearlyseparable one
- by transforming the input space into a high dimensional space.
- Secondly, we wanted to analyze the distortion incurred to each frequency band separately.
- Therefore, the ML systems were being fed with 22 dimensional input space.
- This was expected to be more promising than the situation, where all the frequency bands are dealt with collectively.
- Thus providing 22 features corresponding to a single embedded bit.

Assuming independent, but not identically distributed channels

256x256 image contains 1024 8x8 blocks

16 bits: each bit should be repetitively stored in 1024/16= 64 blocks. In each block, 22 frequency bands are selected for embedding

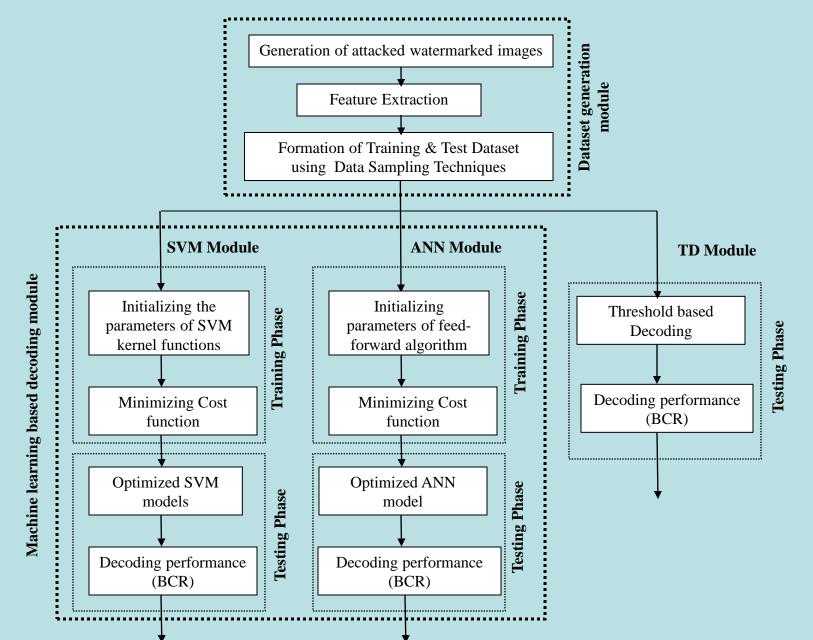
16 bits: each bit should be repetitively stored in 1024/16= 64 blocks.

But, each frequency band is modeled separately, therefore, $G_i^j = 64x1$

Proposed watermark extraction

In our proposed scheme, in view of the attack, each frequency band is modeled separately

$$r_i = \sum_j r_i^j$$
 $j = 1, 2, ...J_{\text{max}}$


where J_{max} is the maximum number of selected frequency bands, and r_i^j is defined as given

$$r_i^{j} \Box \sum_{\mathbf{k} \in Q_i^{j}} \frac{|Y[\mathbf{k}] + \alpha[\mathbf{k}] s[\mathbf{k}]|^{c[\mathbf{k}]} - |Y[\mathbf{k}] - \alpha[\mathbf{k}] s[\mathbf{k}]|^{c[\mathbf{k}]}}{\sigma[\mathbf{k}]^{c[\mathbf{k}]}}$$

where Q^{j}_{i} , is defined as the sample vector of all DCT coefficients in different 8×8 blocks that correspond to a single bit *i* and the *jth* frequency band.

The values of c and σ are estimated from the received watermarked image at the decoding stage.

Basic Block Diagram of our Proposed Scheme

1st Step: Dataset Generation

- Dataset of 16000 bits
- 5 different images
- Embed message in each image using 25 different keys
- Solution Gaussian noise of $\sigma = 10$

Type of Images	Gray Scale
Number of images	5
Name of Images	Baboon, Lena, Trees, Boat & couple
Size of images	256 *256
Size of Message	128 bits
Number of keys	25
Type of Attack	Gaussian Attack
Severity of attack	σ=10

1st Step: Dataset Generation (cont...) Training Images Set

Lena

Couple

Boat

Trees

Baboon

2nd Step: Feature Selection

When Watermarked image is attacked
 Message within the image is also corrupted
 Feature Extraction

- First Method
 - Combine all the statistical coefficients r_i of each bit in message and then sum the number of times that bit is repeated in image.
 - a numerical value corresponding to each bit.
- Second Method
 - Keep all 22 r_i coefficients as features of the bit
 - Add corresponding r_i of the same channel for the number of times each bit is embedded.
 - 22 features corresponding to each bit

3rd Step: Data Sampling Techniques

Self Consistency

- Training and Test data is same
- In training phase, the class of watermark bit is known.

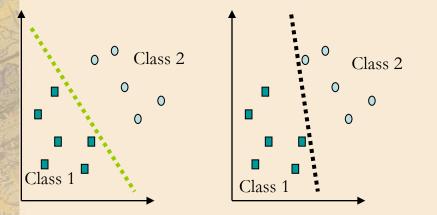
Cross Validation

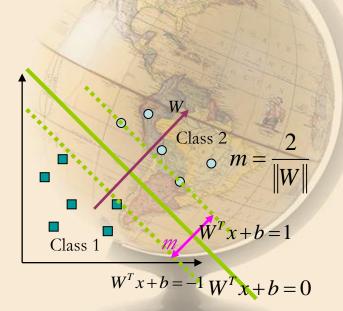
- Training and Test data is different
- 4-fold Jackknife Technique
- Training to test ratio is (3:1)
- Repeat the process 4 times

4th Step: Performance Measure (BCR)

- Performance of Classification Models is evaluated in terms of Bit Correct Ratio (BCR).
- Ratio between number of Bits correctly predicted and that of total number of Bits.

$$BCR(\mathbf{M},\mathbf{M}') = \frac{\sum_{i=1}^{L_m} \overline{\left(M_i \oplus M_i'\right)}}{L_m}$$


where M represents the original, while M' represents the decoded message, L_m is the length of the message and \oplus represents exclusive-OR operation.


Intelligent Decoding Schemes

- 1. SVM based Decoding
- 2. ANN based Decoding

Basics of Support Vector Machine

- Input data mapped into a higher dimension by using dot product of kernel functions.
- Decision boundary should be far away from the data of both classes.

SVM: An Optimization Problem

For training pairs examples

 $(x_i, c_i), x_i \in \mathbb{R}^n, c_i \in \{1, -1\},\$

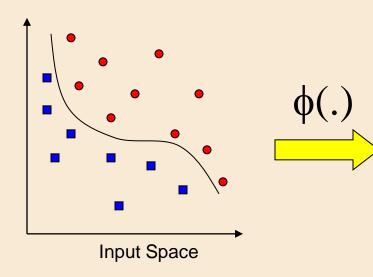
> Decision surface for a linear separable data is :

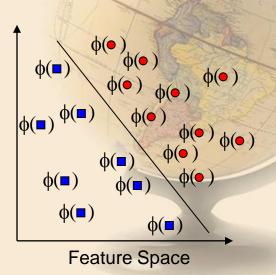
 $f(x) = \sum_{i=1}^{N} \alpha_{i} c_{i} x_{i}^{T} . x + b, \alpha_{i} > 0,$

- > A vector x_i having non zero α_i is called a support vector (SV).
- Decision boundary is determined only by SVs.
- Nonlinear surface:

$$f(x) = \sum_{i=1}^{N_{S}} \alpha_{i} c_{i} K(x_{i}, x) + b = \sum_{i=1}^{N_{S}} \alpha_{i} c_{i} \Phi(x_{i}) \cdot \Phi(x) + b$$

SVM Kernel Functions


>Kernel function and mapping into higher dimensional space


$$K(x_{i}, x_{j}) = x_{i}^{T} \cdot x_{j}$$
 Linear kernel

$$K(x_{i}, x_{j}) = [\gamma < x_{i}, x_{j} > +r]^{d}, \text{ Polynomials kernel}$$

$$K(x_{i}, x_{j}) = \exp(-\gamma || x_{i} - x_{j} ||^{2}), \text{ RBF kernel}$$

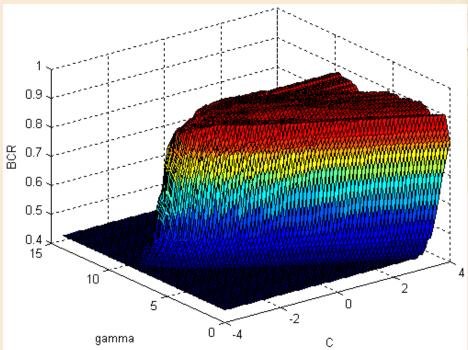
≻Need of Mapping

1. Details of SVM based Decoding

Training

- SVM classification models are trained for both single as well as 22 features.
- Two data sampling techniques: self-consistency, cross-validation are used.
- We used Different SVM kernel functions Linear, Polynomial and RBF.

Testing


- Trained models are used to test the performance on same or entirely different data.
- Results from SVM models are used to estimate the decoding performance in terms of BCR.
- To minimize the problem of over-fitting in the training of SVM classification models, appropriate size of training and testing data is used.

Grid Search

- The decoding performance of these models is optimized using grid search. Suitable grid range and step size is estimated for SVM kernels.
- For Poly-SVM, a grid range of C = $[2^{-2} \text{ to } 2^2]$, $\gamma = [2^{-2} \text{ to } 2^8]$ and step size = 0.4
- For RBF-SVM, C = $[2^{-2} \text{ to } 2^2]$, $\Delta C = 0.4$, $\gamma = [2^{-2} \text{ to } 2^8]$, $\Delta \gamma = 0.4$.
- For linear-SVM, $C = [2^{-1} \text{ to } 2^5]$, with $\Delta C = 0.4$.

Grid Search for SVM Optimization

- Optimizing different SVM parameters.
- Keep 1st parameter constant for entire range of the 2nd.
- Process is repeated for new values of the 1st parameter.
- In this way, optimal values of both parameters are obtained.

2. Details of ANN Based Decoding

ANN models are trained for both single as well as 22 features. Two data sampling techniques: self-consistency, cross-validation are used.

Levenberg-Marquardt Algorithm is used for training

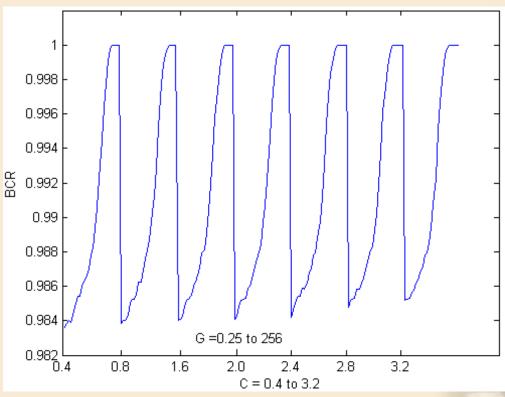
Important parameters : Number of hidden and output layer units, activation functions and training algorithm.

	ANN	IN AR
Features	1	22
Data Size	16000	16000
Epochs	35	25
Hidden layers	3 [8,4,2]	2 [22,11]
Activation function of Hidden Layer	'tansig'	'tansig'
Activation function of Output Layer	'pure linear'	'pure linear'
Training Algo	Levenberg-Marquardt	Levenberg-Marquardt

Parameters for ANN Based decoding Method

Results and Discussion

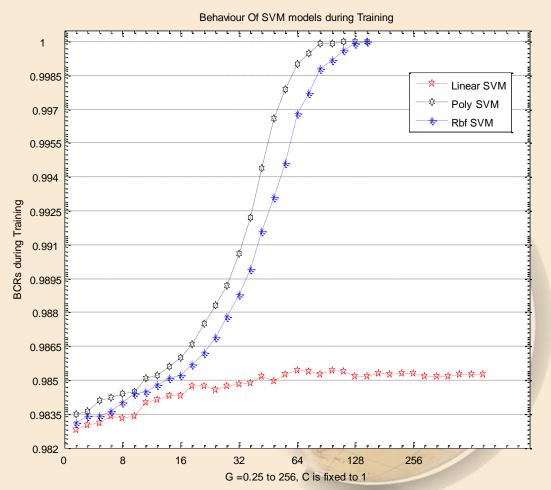
- 1) Implementation Details
- 2) General Behavior of SVM during Training
- 3) Self-consistency Performance in terms of BCR
- 4) Cross-validation Performance in terms of BCR


1). Implementation Details

- Implementation is carried out in MATLAB
- To employ SVM models, MATLAB-based SVM-OSU toolbox is used
- Some of the parameters are optimized using grid search
- To develop ANN classification model, MATLAB built-in ANN toolbox is used.

2). General Behavior of SVM Parameter Optimization During Training

 Cyclic Dependency of SVM performance on parameter C
 Accuracy does not increase after achieving a certain level, whatever is the range

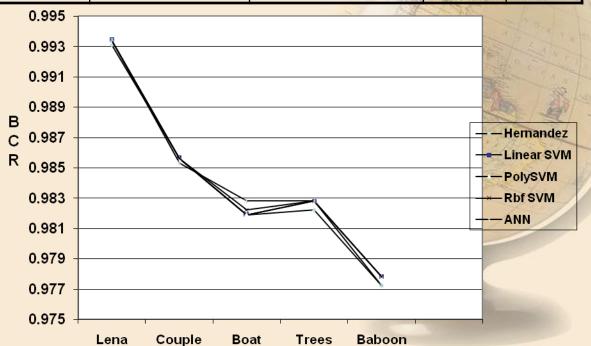

• This helps us in focusing on a short range of C, e.g. 0.4 to 0.8

SVM model Behavior during Grid Search for 22 features

2). General Behavior of SVM during Training (contd...)

- Gamma dependency when C is fixed
- Poly & RBF SVMs forming non linear hyper plane shows improved results
- Poly-SVM optimizes earlier than RBF-SVM

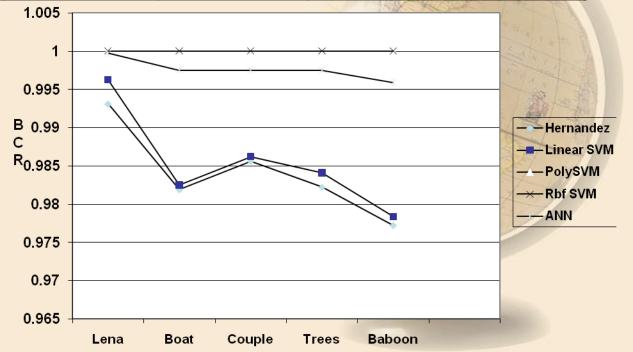
SVM models being trained on 22 features for Self-Consistency


3). Self-Consistency Performance (BCR)

Data	Hernandez	I I I I I I I I I I I I I I I I I I I						A	NN
Size (bits)	Scheme	Li	near	Poly		R	RBF		
		Number of Features		eatures Number of Features Number		Number o	of Features	Number of Featu	ires
		1	22	1	22	1	22	1	22
A ST		C=1	C=48	γ=1	γ =1	γ =1	γ <i>=</i> 256	Epochs=25	Epochs=25
160 <mark>0</mark> 0	0.9840	0.9843	0.98544	0.9843	1	0.9843	1	0.9842	0.9976
cla lir th nc pr hi di	near models assify nearly, and erefore, car ot classify operly in a gh mensional ature space	0.9 B C0.9 0.9 0.9 0.9 0.9	94 - 91 - 88 - 85 - 82 - 79 - 76 -	lez	ML at 1 Fe	ature	ML at 22 F	eatures	□Hernandez □Linear SVM □PolySVM □Rbf SVM ■ANN

3). Self-Consistency Performance using single feature (on different images)

Image Type	Data Size (bits)	Hernandez	Р			
25 copies each	128 x 25	Scheme	Linear $C = 2^{5.6}$	$\begin{array}{c} Poly\\ \gamma=2^4 \end{array}$	$\begin{array}{l} \mathbf{RBF} \\ \gamma = 1 \end{array}$	ANN
Lena	3200	0.9931	0.9934	0.9934	0.9934	0.9934
Boat	3200	0.9819	0.9819	0.9819	0.9819	0.9822
Couple	3200	0.9856	0.9856	0.9856	0.9856	0.9853
Trees	3200	0.9822	0.9828	0.9828	0.9828	0.9828
Baboon	3200	0.9772	0.9778	0.9778	0.9778	0.9772

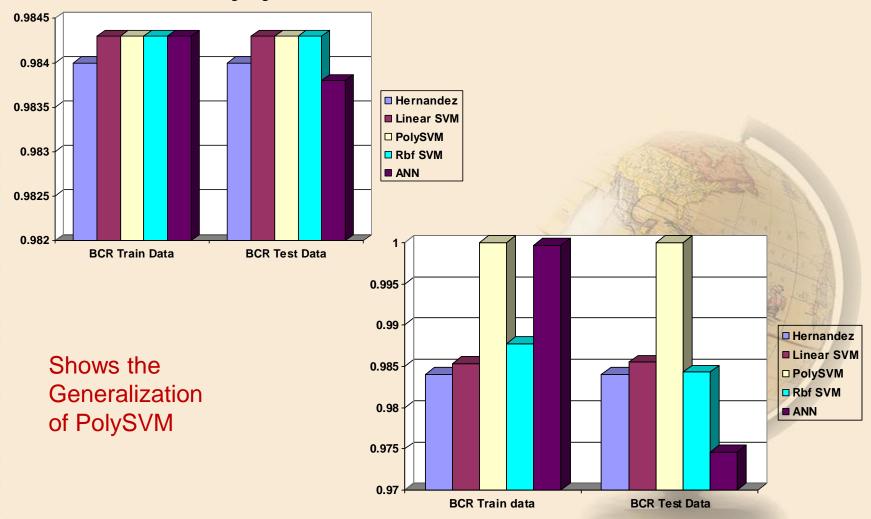

Gaussian noise attack distorts the modeling of DCT coefficients severely in textured image as compared to relatively smooth images

3). Self-Consistency Performance using 22 features (on different images)

Image Type Data Size (bits)				Proposed Scheme SVM Models			
25 copies each	128 x25		Linear $C = 2^{5.6}$	Poly $\gamma=2^7$	$\begin{array}{c} \text{RBF} \\ \gamma = 2^8 \end{array}$		
Lena	3200	0.9931	0.9962	1	1	0.9997	
Boat	3200	0.9819	0.9825	1	1	0.9975	
Couple	3200	0.9856	0.9862	1	1	0.9975	
Trees	3200	0.9822	0.9841	1	152	0.9975	
Baboon	3200	0.9772	0.9784	1	1	0.9959	

Nonlinear models classify nonlinearly, and therefore, can classify properly in a high dimensional feature space

4). Cross-Validation results: (single feature on train/test data)


Type of SVM	С	Gamma γ	Training Data (bits)	BCR	Avg. BCR	Test Data (bits)	BCR	Average BCR
1	0.5 to 1024	-	4000	0.9832		12000	0.9847	
Linear	0.5 to 1024	-	4000	0.9812	0.9843	12000	0.9853	0.9843
NEV.	0.5 to 1024	-	4000	0.9878		12000	0.9832	012010
COLUMN -	0.5 to 1024	-	4000	0.9850		12000	0.9841	
	0.76 to 1.7	1 to 16	4000	0.9832		12000	0.98467	
Poly	0.76 to 1.7	1 to 16	4000	0.9812	0.9843	12000	0.98533	0.9843
	0.76 to 1.7	1 to 16	4000	0.9878	2	12000	0.98317	
State 1	0.76 to 1.7	1 to 16	4000	0.9850	×	12000	0.98408	the the the
RBF	1 to 1.74	1.74 to 16	4000	0.9832	and the second s	12000	0.98467	1 - Carlor
and a start	1 to 1.74	1.74 to 16	4000	0.9812	0.9843	12000	0.98533	0.9843
X	1 to 1.74	1.74 to 16	4000	0.9878	me	12000	0.98317	
VANGE	1 to 1.74	1.74 to 16	4000	0.9850		12000	0.98408	1 31
- And	-	-	4000	0.983		12000	0.98433	
ANN	-	-	4000	0.98175	0.9843	12000	0.984	0.9838
Sin 1	-	- 4000 0.9875		12000	0.983			
	-	-	4000	0.98475		12000	0.98392	

4). Cross-Validation results: 22 feature (train/test data)

Type of SVM	С	Gamma γ	Training Dat a (bits)	BCR	Average BCR	Test Data (bits)	BCR	Average BCR
Contraction of the second	48.503	-	4000	0.9852		12000	0.9855	0.9855
Linear	48.503	-	4000	0.9832	0.9853	12000	0.98617	
1	111.43	-	4000	0.9868	0.7022	12000	0.9850	
	111.43	-	4000	0.9860		12000	0.98525	
NOT SI	0.4 to 2	194	4000	1		12000	1	
Poly	0.4 to 2	194	4000	0.9998	1	12000	1	1
	0.4 to 2			12000	1,1,1			
	0.4 to 2	194	4000	1		12000	12.5	
	0.75786	5.2768	4000	0.9850	0.9877	12000	0.98483	0.9840
RBF	1.3195	6.9644	4000	0.9875		12000	0.98475	
Cald'	1	1.7411	4000	0.9868		12000	0.98333	
- Sol	2.2974	9.1896	4000	0.9915	Y	12000	0.98325	A A A A A A A A A A A A A A A A A A A
	-	-	4000	0.9992	1	12000	0.9762	at al
ANN	-	-	4000	0.9998	0.9997	12000	0.9727	0.9746
	-	-	4000	0.9998	0.7777	12000	0.9768	
	-	-	4000	0.9998		12000	0.9727	
	-	-	4000	0.983		12000	0.98433	
Hernandez	-	-	4000	0.9805	0.9840	12000	0.98517	0.9840
	-	-	4000	0.98775	0.2010	12000	0.98275	0.2010
	-	-	4000	0.98475		12000	0.98375	

4). Cross Validation Performance Comparison (Single & 22 Features)

Cross-validation Performance using single feature

Cross-validation Performance using 22 feature

Conclusion

- We practically demonstrate that the use of ML techniques like SVM attains high performance than traditional decoders in presence of an attack.
- Exploitation of individual frequency bands shows performance improvement
- General order of Performance in terms of BCR is: SVM > ANN > Threshold Decoding and for different Kernels of SVM: PolySVM ≈ RbfSVM > LinearSVM
- When an application of watermarking is changed, and consequently, new attacks are anticipated,
- The re-training of the ML based decoding makes it adaptive by learning the distortion incurred on the features.