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ABSTRACT 2 
Motivation: Calmodulin (CaM) is a ubiquitously conserved protein 3 
that acts as a calcium sensor, and interacts with a large number of 4 
proteins. Detection of CaM binding proteins and their interaction 5 
sites experimentally requires a significant effort, so accurate meth-6 
ods for their prediction are important. 7 
Results: We present a novel algorithm (MI-1 SVM) for binding site 8 
prediction and evaluate its performance on a set of CaM-binding 9 
proteins extracted from the Calmodulin Target Database. Our ap-10 
proach directly models the problem of binding site prediction as a 11 
large-margin classification problem, and is able to take into account 12 
uncertainty in binding site location. We show that the proposed algo-13 
rithm performs better than the standard SVM formulation, and illus-14 
trate its ability to recover known CaM binding motifs. A highly accu-15 
rate cascaded classification approach using the proposed binding 16 
site prediction method to predict CaM binding proteins in Arabidop-17 
sis thaliana is also presented.  18 
Availability: Matlab code for training MI-1 SVM and the cascaded 19 
classification approach is available on request. 20 
Contact:  fayyazafsar@gmail.com; asa@cs.colostate.edu 21 

1 INTRODUCTION  22 
Calmodulin (CaM) is an intracellular calcium sensor protein that 23 
interacts with a large number of proteins to regulate their biologi-24 
cal functions and exhibits sequence conservation across all eukary-25 
otes (Bouche, Yellin, Snedden, & Fromm, 2005). Ca2+ plays a very 26 
important role in many cellular functions ranging from fertilization 27 
and cellular division to neuronal spiking (Reddy, Ben-Hur, & Day, 28 
2011). Due to the importance of calcium signaling in cells, identi-29 
fying proteins that bind CaM and determining the location of the 30 
CaM binding site in them can help in gaining a better understand-31 
ing of cellular function in general, and the role of calcium in dif-32 
ferent cellular processes in particular. This paper presents a highly 33 
accurate computational approach that can identify the location of a 34 
CaM binding site in a protein solely on the basis of its amino acid 35 
sequence, helping avoid the significant effort of performing such 36 
experiments in the lab (Reddy, Ben-Hur, & Day, 2011). Our ap-37 
proach uses sequence information alone, which ensures its wider 38 
applicability in comparison to methods that rely on structural mod-39 
eling (Zhou & Qin, 2007).  40 

CaM binding sites are known to be contiguous in sequence, of-41 
ten occurring through an amphiphilic alpha helix (O'Neil & 42 
DeGrado, 1990).  This makes CaM binding site prediction amena-43 
ble to a sliding-window classification approach, as applied in re-44 

cent work (Radivojac, Vucetic, O'Connor, Uversky, Obradovic, & 45 
Dunker, 2006), (Hamilton, Reddy, & Ben-Hur, 2011). The method 46 
by Radivojac et al. uses a hierarchical neural network classifier 47 
trained on the basis of amino acid properties averaged over a fixed-48 
size window.  Hamilton et al. showed that a simple sliding window 49 
Support Vector Machine (SVM) trained on average amino acid 50 
composition achieves similar performance.  51 

In this paper we present a novel formulation of the binding site 52 
prediction problem that is based on the framework of multiple 53 
instance learning (MIL) (Dietterich, Lathrop, & Lozano-Perez, 54 
1997).  In MIL positive examples come in bags.  For a positive 55 
bag, it is assumed that at least one of the examples is indeed posi-56 
tive whereas negative bags contain only negative examples.  We 57 
use this for binding site prediction by forming a positive bag out of 58 
fixed-size sequence windows that overlap the annotated binding 59 
site.  This allows us to model the uncertainty in actual binding site 60 
location–experimental methods may not precisely locate a binding 61 
site, and may include a region that is larger than the true binding 62 
site due to limitations of budget and experimental procedures.  63 
Furthermore, modeling binding sites this way facilitates the use of 64 
sequence representations that are position dependent, yielding a 65 
more detailed model of the binding site.  This allows learning of 66 
motifs that are characteristic of the binding site. 67 

MIL has been applied in a variety of other problem domains 68 
such as object tracking (Babenko, Yang, & Belongie, 2011), pro-69 
tein identification (Tao, Scott, Vinodchandran, & Osugi, 2004), 70 
and prediction of protein-ligand binding affinities (Teramoto & 71 
Kashima, 2010). 72 

Our results show that the proposed MI-1 SVM has higher accu-73 
racy than the classical multiple instance SVM (Andrews, 74 
Tsochantaridis, & Hofmann, 2003), and is also faster to train.  MI-75 
1 also performs better than a standard SVM, thereby improving on 76 
existing work of (Radivojac, Vucetic, O'Connor, Uversky, 77 
Obradovic, & Dunker, 2006) and (Hamilton, Reddy, & Ben-Hur, 78 
2011).  We also compare the merits of several ways of representing 79 
binding sites, and demonstrate the ability of our method to learn 80 
motifs that are associated with CaM binding. Finally, we show 81 
how the resulting binding site predictor can be used as the basis for 82 
a classifier that predicts CaM binding proteins, with improved 83 
accuracy over earlier work. 84 

2 METHODS 85 

2.1 Data Sets and Pre-processing 86 
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The data set for CaM binding site prediction and its pre-processing 1 
follows (Radivojac, Vucetic, O'Connor, Uversky, Obradovic, & 2 
Dunker, 2006). A set of 210 proteins was obtained from the Cal-3 
modulin Target database (Yap, Kim, Truong, Sherman, Yuan, & 4 
Ikura, 2000). Each of these proteins bind CaM, and one or more 5 
binding sites within each protein are annotated. A non-redundant 6 
subset of 153 proteins containing 185 binding sites was then cho-7 
sen such that no two proteins have more than 40% sequence identi-8 
ty and no two binding sites are more than 50% identical.  9 

Sequence windows of length 21, the average length of CaM 10 
binding sites, were extracted from the protein sequences to create 11 
positive and negative examples. Negative examples were created 12 
by sliding a length 21 window in 10 amino acid increments such 13 
that no part of the window overlaps an annotated binding site. 14 
Positive examples, on the other hand, were created by sliding a 15 
length 21 window over an annotated binding site in increments of 16 
1 amino acid. Thus, the number of positive examples from an an-17 
notated binding site equals the number of amino acids in the bind-18 
ing site.  19 

For CaM binding prediction, we used a data set of 236 proteins 20 
experimentally determined to bind CaM using a protein array 21 
screen that tested around a thousand proteins in Arabidopsis thali-22 
ana (Popescu, 2007). The remaining 27,140 proteins  in the Ara-23 
bidopsis thaliana proteome were used as negative examples (non-24 
binders).  25 

2.2 Vanilla SVM 26 

As a baseline method we have used a standard binary SVM (Cortes 27 
& Vapnik, 1995).  Our labeled dataset consists of N labeled exam-28 
ples        , where    is the sequence of a window, and 29 
    {     } is its associated label indicating whether the central 30 
residue of    lies in a binding site or not.  31 
The large-margin learning problem can be formulated as: 32 
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Here       is the feature representation of the window    and the 33 
cost parameter   controls the trade-off between constraint viola-34 
tion and margin maximization. The discriminant function       35 
          can then be used to predict whether a given window 36 
is part of a binding site or not. The location of a binding site is 37 
predicted by the window that offers the highest value of the dis-38 
criminant function for that protein (Hamilton, Reddy, & Ben-Hur, 39 
2011). PyML (Ben-Hur, PyML - machine learning in Python, 40 
2011) was used for the implementation. 41 

2.3 Multiple Instance Learning SVM (mi-SVM) 42 

In MIL (both mi-SVM and MI-1-SVM), the positive examples 43 
from each binding site are grouped into a single bag. We denote 44 
the set of positive examples for a given binding site   as      and 45 
the set of negative examples from the protein to which the binding 46 
site   belongs as     . The mi-SVM approach is formulated as 47 
follows (Andrews, Tsochantaridis, & Hofmann, 2003): 48 
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In this formulation    {     } acts as a label for the window 49 
  , and the objective is to find the optimal labeling of the examples 50 
that comprise the positive bags such that at least one example in 51 
each positive bag is labeled as positive (∑        ⁄         ). 52 
The other constraints ensure correct labeling of the given training 53 
examples and that all negative examples are labeled as negative 54 
examples. In case of the binding site prediction problem, this 55 
means that a trained mi-SVM will choose at least one positive 56 
window from the set of positive windows in a binding site. The mi-57 
SVM formulation is a combinatorial optimization problem. We use 58 
the heuristic algorithm proposed by (Andrews, Tsochantaridis, & 59 
Hofmann, 2003) to solve this problem.  The algorithm initially 60 
assigns the label of a bag to all examples in it, i.e., all examples in 61 
positive bags are assigned a label of +1 whereas all negative ex-62 
amples are assigned -1. It uses these assigned labels to solve a 63 
regular SVM learning problem (as in Equation (1)). Labels for all 64 
examples in positive bags are then imputed based upon the sign of 65 
their discriminant function value. If no example in a positive bag is 66 
assigned a positive label (i.e. the constraint ∑        ⁄         67 
is violated), the algorithm picks the example in the bag having the 68 
largest discriminant function value and sets its label to +1. The 69 
algorithm then alternates between label imputation and SVM train-70 
ing until the labels stop changing. This simple algorithm has 71 
shown good performance in comparison to more complicated ones 72 

(Andrews, Tsochantaridis, & Hofmann, 2003). 73 
 74 

Fig. 1. CaM binding site prediction with MIL.  The annotated binding site 75 
is shown as a box, and is represented by a “bag” composed of the windows 76 
indicated in red above the binding site.  The rest of the windows that do not 77 
overlap the binding site are negative examples (shown in blue below the 78 
protein).  The bottom panel illustrates the desired characteristics of the 79 
classifier’s discriminant function. The dots indicate the score of different 80 
examples (positive indicated by solid red circles and negative shown as 81 
hollowed blue circles). The score from the trained discriminant function for 82 
one window in a binding site should be higher than the scores generated for 83 
non-binding site windows within that protein. 84 

2.4 Novel MI SVM Formulation (MI-1 SVM) 85 

Accurate prediction of the location of a binding site in a protein 86 
requires a less stringent condition than the one used in mi-SVM: at 87 
least one window in the true binding site needs to score higher than 88 
the negative windows from the same protein (see Fig. 1). This 89 
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allows us to significantly reduce the complexity of the learning 1 
problem in comparison to mi-SVM. The mi-SVM and vanilla 2 
SVM formulations try to classify windows as binding or non-3 
binding without modeling the concept that these windows in fact 4 
lie within a protein. Our proposed MI-1 SVM formulation, on the 5 
other hand, operates at the protein level. The large-margin formula-6 
tion of this learning problem, can be expressed as follows: 7 
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where, M is the total number of binding sites in the training data. 8 
For a given binding site, this formulation tries to maximize the 9 
difference between the discriminant function values of the maxi-10 
mum scoring window within the binding site and the non-binding 11 
windows in the rest of the protein containing that binding site. 12 
Since MI-1 SVM simply compares the discriminant function 13 
scores in the binding and non-binding site windows in its con-14 
straints, it does not require a bias term. Moreover, the number of 15 
slack variables (  ) in MI-1 SVM is equal to the number of bind-16 
ing sites and not the number of training examples, as in the vanilla 17 
SVM and the mi-SVM. As a consequence, the number of variables 18 
involved in the optimization in MI-1 SVM is much smaller than 19 
that in mi-SVM and this leads to faster training. Using the same    20 
for a single binding site effectively takes the maximum of the 21 
scores over all non-binding site windows of the protein to which b 22 
belongs. Another important feature of MI-1 SVM is that, like the 23 
ranking SVM discussed in (Joachims, 2006), MI-1 SVM also ex-24 
plicitly maximizes the area under the Receiver Operating Charac-25 
teristics (ROC) curve. 26 
Table 1. Heuristic algorithm used for training MI-1 27 
Initialization 

With each binding site b, we associate a representative example    with 

feature representation       which is initialized to be the mean of the 

examples in P(b):  
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∑      

      

    

Until Convergence, repeat: 

Solve the following quadratic programming (QP) problem: 
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 Update (for all binding sites): 
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Similar to mi-SVM, which performs optimization over the labels 28 
of examples in positive bags, MI-1 SVM is also a combinatorial 29 
optimization problem because of the maximum operation in its 30 
constraints. We have used the heuristic algorithm given in Table-1 31 
to obtain a solution to this problem. The algorithm can be stopped 32 
when the representative examples of all binding sites stop chang-33 
ing, or on the basis of a user-defined maximum number of itera-34 
tions.  In all our experiments, the algorithm converged in 10 itera-35 
tions or less. A trained MI-1 SVM can be used to produce discri-36 
minant function scores for any given residue in a protein. 37 

The quadratic programming problem in the MI-1 algorithm can 38 
be solved in the primal or in the dual. The primal formulation of 39 
the problem (3) is more efficient than the dual when the dimen-40 
sionality of the feature vector is smaller than the number of train-41 
ing examples. The dual formulation of the quadratic programming 42 
problem (based upon the Lagrange of the primal) is given by: 43 
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Here   
  is the Lagrange variable corresponding to the primal con-44 

straint            (  )       and   
         (  ). 45 

The dual formulation reveals some interesting aspects of the MI-1 46 
SVM. It shows that Lagrange variables     only exist for negative 47 
examples, and that the sum of all   for negative examples from a 48 
single protein is constrained to be less than or equal to   ⁄ . This 49 
differs from a conventional SVM formulation which requires that 50 
each of the  , on its own, should be less than or equal to   ⁄  and 51 
the sum of products of   from all training examples with their 52 
corresponding labels should be zero. Thus, the MI-1 SVM formu-53 
lation is less constrained than a conventional SVM formulation and 54 
this can potentially lead to a better solution.  55 

2.5 CaM Binding Prediction 56 

In this paper, we compare the following two strategies for CaM 57 
binding prediction. 58 

2.5.1 Discriminant Function Scoring 59 
The maximum discriminant function score across all windows in a 60 
protein can be used as the CaM binding propensity of that protein. 61 
This approach was used in (Hamilton, Reddy, & Ben-Hur, 2011) to 62 
predict CaM binding of proteins in the Arabidopsis thaliana prote-63 
ome. In their method, the scores were generated using a standard 64 
SVM classifier trained for binding site prediction. In this paper, we 65 
use the scores from MI-1 SVM instead. 66 

2.5.2 Cascaded Classification 67 
We implemented a two stage cascaded classification approach for 68 
CaM binding prediction. In the first stage the window in a given 69 
protein with the highest MI-1 SVM discriminant function score is 70 
chosen as the most likely binding site window for that protein. This 71 
is done for all proteins in the training set. In the second stage, a 72 
standard SVM is trained to discriminate between the most likely 73 
binding site windows in positive examples (known CaM binding 74 
proteins) and negative examples (non CaM-binding proteins). 75 
Once the second stage SVM has been trained, the binding propen-76 
sity of a test protein can be estimated by first finding its most like-77 
ly binding site window using MI-1 SVM, and then evaluating the 78 
discriminant function value of the second stage SVM for the cho-79 
sen window. A Gaussian kernel was used in the second stage SVM 80 
as it performed significantly better than a linear kernel. However, 81 
the use of non-linear kernels in MI-1 SVM did not seem to im-82 
prove performance. 83 
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2.6 Feature Representations 1 
The performance of the learning methods described above for 2 
binding site and CaM binding prediction was analyzed using a 3 
number of feature representations which are presented next. 4 

2.6.1 p-spectrum  The p-spectrum      of a string over an 5 
alphabet ∑ is a vector each of whose components       is the 6 
number of occurrences of each length-p substring   in the string x. 7 
The p-spectrum kernel between two strings is given by the corre-8 
sponding Euclidean dot product (Leslie, Eskin, & Noble, 2002). 9 

2.6.2 Position dependent p-spectrum The position dependent p-10 
spectrum      of a string   is a vector of indicator variables 11 
          each showing whether the length-p substring   occurs at 12 
position   in the string x. The resulting position dependent p-13 
spectrum kernel is given by:                     . The posi-14 
tion dependent kernel takes the relative position of an amino acid 15 
in a window into account whereas the p-spectrum kernel does not. 16 

2.6.3 Position dependent gappy triplet  This feature representa-17 
tion quantifies the occurrences of motifs of the form        , 18 
where  a,b,c are amino acids and    indicates m don't-care posi-19 
tions. For a given string  , the feature vector         of the posi-20 
tion dependent gappy triplet comprises of variables           

       21 
which indicate whether the motif         starts at position   in 22 
the string or not. The kernel                             be-23 
tween two strings tells us the number of locations in the two strings 24 
that have the same motif starting at them. We have used multiple 25 
position dependent gappy triplet kernels as             26 
∑ ∑            

   
 
   . This kernel allows us to extract meaning-27 

ful information about motifs for CaM binding sites and is only 28 
used for binding site prediction for this purpose.   29 

We perform normalization of any kernel representation using the 30 

cosine kernel         
   

       

√              
 . 31 

2.7 Evaluation Methodology 32 

We use Leave-One-Protein-Out (LOPO) cross validation in order 33 
to analyze the performance for binding site prediction. In LOPO, 34 
all examples (positive or negative) from a single protein are held-35 
out while the classifier is trained on the remaining proteins. The 36 
classifier is then evaluated over the examples from the held out 37 
protein. We evaluate the following performance metrics and use 38 
their average across all proteins to make comparisons between 39 
methods and kernels: 40 

a. Protein level area under the ROC curve (AUC): The area 41 
(expressed as percentage) under the Receiver Operating Char-42 
acteristic (ROC) curve (the plot of true positive rate versus 43 
false positive rate) obtained for windows in a given protein.  44 

b. Protein level Area under ROC 10% Curve (AUC0.1): The area 45 
(expressed as percentage) under the ROC curve based on up 46 
to the first 10% false positives in a protein.  47 

c. False-Hit Ratio (FH-measure): The percentage of non-binding 48 
site windows (out of the total number of non-binding site 49 
windows) that have a score higher than the maximum scoring 50 
window in the known binding site. This measure tells us how 51 

many non-binding site windows are expected with a score 52 
higher than the true binding site window.     53 

d. True Hit Probability (TH-measure): For a given protein, a true 54 
hit is defined to occur when the residue at the center of the 55 
highest scoring window for that protein lies within a binding 56 
site. The average number of true hits across all proteins 57 
(called the TH-measure) represents the probability of the 58 
maximum scoring window predicted by a classifier to lie 59 
within a true binding site. 60 

The AUC is a measure of how good a particular method is in rank-61 
ing binding site windows above non binding sites.  AUC0.1 gives us 62 
a sense of how good are the top scoring windows produced by a 63 
classifier. The FH measure represents the chances of a non-binding 64 
site window to be ranked higher than a true binding site window. 65 
The TH-measure tells us about the chances of the highest scoring 66 
window predicted by a classifier to belong to a true binding site. 67 
Both the TH and the FH measures provide meaningful information 68 
about the accuracy of the method to a biologist who intends to use 69 
the proposed prediction scheme to verify potential binding site 70 
locations experimentally.   71 
We use AUC as the performance metric for CaM binding predic-72 
tion. AUC can be directly computed from the estimated CaM bind-73 
ing propensities when using the discriminant function scoring ap-74 
proach. With the cascaded classification approach, AUC is ob-75 
tained from 5-fold stratified cross validation with nested grid 76 
search for model selection. In cross-validation, it was ascertained 77 
that two proteins with more than 40% sequence similarity are in 78 
the same fold (evaluated using BLASTCLUST from the NCBI 79 
BLAST package (Altschul, Gish, Miller, Myers, & Lipman, 1990). 80 
Moreover, the data for CaM binding prediction in A. thaliana did 81 
not include any proteins which were part of the MI-1 training set. 82 

2.8 Model Selection 83 
In order to perform model selection (the choice of the cost pa-84 

rameter C) for the vanilla and MI-1 SVM formulations for binding 85 
site prediction, we used nested 5-fold cross validation within each 86 
iteration of LOPO cross validation. The TH-measure obtained 87 
from the 5-fold cross validation is then used to choose the value of 88 
C for that iteration of LOPO. The values of C that were used in the 89 
nested cross validation are {0.01, 0.1, 1.0, 10, 100}.  90 

As mi-SVM takes a long time to train, nested cross validation 91 
could not be performed. Instead we evaluated the LOPO cross 92 
validation performance (TH-measure) of mi-SVM with different 93 
values of C in {0.01, 0.1, 1.0, 10, 100} and the best results with the 94 
optimal value of C=10 are reported. This method for selection of C 95 
for mi-SVM can potentially lead to over optimistic performance 96 
estimates.  This is not an issue, since our claim is that the proposed 97 
approach performs better. 98 

In the case of CaM binding prediction in Arabidopsis thaliana 99 
using cascaded classification, we performed a nested (5-fold) grid 100 
search within each cross validation fold for selecting the parameter 101 
values of the second-stage SVM. Values of C in the SVM and   of 102 
the Gaussian kernel (               ‖           ‖

  ) 103 
were chosen from {0.1, 1, 10, 100} and {0.005, 0.02, 0.5, 2.0} 104 
respectively.  105 

3 RESULTS & DISCUSSION 106 
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Table 2 presents the LOPO cross validation results for the three 1 
SVM formulations for the 1-spectrum, position dependent 1-2 
spectrum and the combination of the two feature representations 3 
for predicting CaM binding sites.  We observe that both MIL for-4 
mulations (mi-SVM and MI-1 SVM) perform better than the vanil-5 
la SVM. This shows the value of expressing binding site prediction 6 
as a multiple instance learning problem. This is particularly evident 7 
with the use of position dependent feature representations, as they 8 
are more sensitive to changes in relative position of an amino acid 9 
in a window within the binding site than position independent fea-10 
ture representations. It can also be noted that the accuracy of MI-1 11 
SVM is noticeably better than mi-SVM. We believe that this im-12 
provement stems from the fact that the proposed scheme imple-13 
ments a more realistic model of the binding site prediction prob-14 
lem. The improvement resulting from switching to a position de-15 
pendent feature representation is also larger for MI-1 SVM than 16 
that observed in the case of mi-SVM. The higher AUC0.1 scores 17 
indicate the improved sensitivity and specificity of MI-1 SVM 18 
which is also reflected in the ~8% improvement in the TH-19 
measures and the decrease in the FH-measure. 20 

The vanilla SVM approach is the same as the method in 21 
(Hamilton, Reddy, & Ben-Hur, 2011), which they showed works 22 
comparably as the neural network approach of (Radivojac, 23 
Vucetic, O'Connor, Uversky, Obradovic, & Dunker, 2006).  There-24 
fore we conclude that the proposed scheme performs better than 25 
previously reported approaches.  26 

We also compare the performance of these approaches with a 27 
naive local alignment based method for finding CaM binding sites. 28 
In this method, local alignment between a held out protein and the 29 
binding sites of the remaining proteins is performed and if the best 30 
scoring alignment overlaps (by at least ten residues) with the 31 
known binding site in the held out protein, it is considered to be a 32 
true hit. This approach gives a TH% of 39.5%. This shows that the 33 
machine learning approaches presented in this paper use more than 34 
sequence similarity to make better predictions. 35 

We have also performed an analysis of the stability of the results 36 
for the MI-1 and the vanilla SVMs by averaging performance sta-37 
tistics of 12 runs of 5-fold cross validation. This analysis was not 38 
performed for mi-SVM or for the gappy triplet kernel with MI-1 39 
SVM owing to their large time requirements. The 5-fold cross 40 
validation results for both the methods are very similar to the 41 
LOPO cross validation results. The maximum standard deviation 42 
in a particular performance metric across different feature repre-43 
sentations obtained from the 5-fold cross validation for vanilla and 44 
MI-1 SVMs is given in Table 2. This statistic gives an idea of the 45 
variability of the results with respect to changes in the data. 46 

Figure 2 shows the output of the MI-1 SVM for a single protein 47 
for the position dependent and position independent versions of the 48 
1-spectrum feature representation. It is quite clear that the output 49 
for the position independent features is much smoother than that 50 
from the position dependent 1-spectrum features. This is because 51 
the position independent 1-spectrum feature vector representation 52 
changes only slightly as the window is translated by one position, 53 
whereas the position dependent feature vector can change dramati-54 
cally. Due to the increased resolution power, the position depend-55 
ent features lead to a classifier that is able to correctly predict both 56 

binding sites in the example shown in Figure 2, which is not 57 
achieved using the position dependent features. 58 

 
Fig. 2. MI-1 discriminant values along the length of a held-out protein. 59 
with the position independent (top) and the position dependent (bottom) 1-60 
spectrum features. 61 

Table 2. Results across methods and kernels. The features are 1-spectrum 62 
(1-Spec), position dependent 1-spectrum (PD-1) and the combination 63 
(Comb) of the 1-Spec and PD-1 representations. The Max Std. rows show 64 
the maximum standard deviation of a particular performance metric using 65 
the above feature representations. Results with the position-dependent 66 
Gappy triplet kernel (Gappy) with MI-1 SVM are also reported (for a single 67 
run due to its longer computational time). Bold numbers indicate the best 68 
value (across all methods) for a particular metric using a particular feature 69 
representation. (AUC: Area under the ROC curve, AUC0.1 AUC for first 70 
10% false positives, TH: True hit, FH: False hit). 71 

Method Features AUC AUC0.1 TH % FH % 

Vanilla 

SVM 

1-Spec 95.5 53.9 66 2.6 

PD-1 95.6 54.5 64 2.5 

Comb. 95.9 55.1 65 2.1 

Max. Std. 0.16 0.59 2.2 0.15 

mi-SVM 

1-Spec 95.5 54.4 64 2.6 

PD-1 96.0 55.8 69 2.1 

Comb. 96.2 55.6 68 1.9 

MI-1 

SVM 

1-Spec 96.0 54.3 62 2.1 

PD-1 96.8 58.5 72 1.3 

Comb. 96.9 59.0 75 1.2 

Max Std. 0.14 0.80 3.4 0.11 

Gappy 96.5 58.5 68 1.6 

Table 3. Results of CaM binding prediction for Discriminant Function 72 
Scoring and Cascaded Classification with an SVM with a Gaussian kernel. 73 
The features are 1-spectrum (1-Spec), position dependent 1-spectrum (PD-74 
1) and the combination  (Comb) of the 1-Spec and PD-1 feature representa-75 
tions. Using Cascaded Classification with a liner kernel in the second stage 76 
SVM instead of the Gaussian kernel, the best AUC was 0.72 with 1-77 
spectrum features. (AUC: Area under the ROC curve). 78 

Method Features AUC 

Discriminant Function Scoring  

1-Spec 71.9 

PD-1 70.1 

Comb. 71.9 

Cascaded Classification 

1-Spec 75.3 

PD-1 71.1 

Comb. 72.3 
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Fig. 3.  (a) Weights of different amino acids in the (position independent) 1-spectrum feature representation (b) Heat map of the weights of different amino 1 
acids versus their position from the MI-1 SVM position dependent 1-spectrum feature representation and (c) Top 100 (in terms of their weights) motifs from 2 
the position dependent gappy triplet kernel. The last (numeric) column shows actual weight values.  3 

We have also analyzed the weight vectors from different feature 4 
representations in order to extract amino-acid patterns informative 5 
of CaM binding sites. The plot of weights from the 1-spectrum 6 
features and the position dependent 1-spectrum features are shown 7 
in Figure 3a and 3b respectively. The weights for the 1-spectrum 8 
features closely follow the amino acid propensities in CaM bind-9 
ings sites (Hamilton, Reddy, & Ben-Hur, 2011), with R (Arginine), 10 
K (Lysine) and W (Tryptophan) showing large positive weights, 11 
whereas D (Aspartic acid), E (Glutamic acid) and P (Proline) have 12 
large negative weights. The plot of the position dependent 1-13 
spectrum features indicates that the importance of different amino 14 
acids varies with their position in the window. For example, Argi-15 
nine shows large positive weights in the middle of the window, and 16 
negative weights in the ends; Glutamic acid shows the opposite 17 
behavior.  This indicates that the classifier is indeed learning a 18 
position dependent model.  19 

The results of 5-fold cross validation using the position depend-20 
ent gappy triplet kernel (       shown in Table 2 indicate that 21 
this kernel provides comparable performance to other feature rep-22 
resentations using MI-1 SVM. Since the number of dimensions in 23 
the feature representation of the gappy triplet kernel is much larger 24 
than the number of training examples, MI-1 SVM learning was 25 
performed using the dual formulation for this kernel, which is 26 
more computationally intensive.  That is why we have used 5-fold 27 
cross validation instead of LOPO cross-validation. 28 

Next, we ranked the features of the gappy triplet kernel in terms 29 
of their weights in MI-1 SVM learning in order to find motifs that 30 

are associated with CaM binding.  Figure 3c shows the top 100 31 
motifs and their positions.  We observe that motifs tend to associ-32 
ate with particular positions, showing that MI-1 SVM uses the 33 
flexibility in choosing a representative window to “align” instances 34 
of CaM binding sites (for instance, notice the presence of 'R' at 35 
positions 10 and 11 across different features). Moreover, it is able 36 
to find parts of known CaM binding motifs provided in the CaM 37 
Target Database (Yap, Kim, Truong, Sherman, Yuan, & Ikura, 38 
2000). The CaM Target Database classifies CaM binding targets 39 
into 5 groups, each characterized by certain motifs: three predomi-40 
nantly calcium dependent motifs (1-10, 1-14 and 1-16, named 41 
according to the position of large hydrophobic residues), the IQ 42 
motif which is typically not dependent on calcium concentration, 43 
and others. As is evident from Figure 3c, IQ, QxxxR, RxxxxR, 44 
RGxxxR, RxxL, KxxxxR receive large positive weights. These 45 
motifs are components of the IQ subclass of motifs. Other features 46 
belonging to different subclasses of motifs that receive large posi-47 
tive weights include: AxxI, IxxxF, LxxV, (from the 1-14 subclass), 48 
RR, KK, RxF (from the 1-10 subclass) etc. This clearly illustrates 49 
the capabilities of the proposed scheme to learn CaM binding mo-50 
tifs.  We also note that most of the top ranking features correspond 51 
to a motif with 3 or 4 don’t care positions.  This is in agreement 52 
with the known fact that CaM binding usually occurs via an alpha 53 
helix, and this corresponds to the periodicity of the alpha helix. 54 

On the task of CaM binding prediction (Table 3), the perfor-55 
mance of discriminant function scoring is only marginally better 56 
than that of the 1-spectrum feature representation used in 57 
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1 3 5 7 9 11 13 15 17 19 21

K x I x R 0.21384
A x x I x x x F 0.21387
I x x x x A x x R 0.21406

Q x x x x G x x x R 0.21448
A x x x Q x x F 0.21471

I Q x x F 0.21493
A x x x I x x x F 0.21493
A x x x x Q x x F 0.21493

F x x x x K K 0.21499
Q x x x R x F 0.215

K x x x x R x K 0.21502
I x x x x R R 0.21503

I x x x x A x S 0.21504
Q x x x R x W 0.21504
Q x x Y R 0.21505

Y R x x x x K 0.21505
S x x x I x x x x R 0.21505

Q x A x R 0.21505
Q x x x R x x L 0.24277

K x K x K 0.25059
Q x x x R x x x x R 0.25116

R G x x x R 0.25292
I x x Q x x x R 0.25364

R x x x R x R 0.2538
R x x x R x x x x A 0.25665

I x R x x x R 0.26105
I x R A 0.26439
K x x x x R x x x K 0.26459

A x x I Q 0.26655
I x x x x R x x x A 0.26874
Q x x x R R 0.2688

Q x x x R x x x x R 0.28308
A A x x x Q 0.29276
A x x x x Q x x x R 0.29277
A x x x I Q 0.29747
A A x x I 0.30082

R R x L 0.30371
A x x x I x x x x R 0.30511
Q x x x R x x x x R 0.30994
A x x I x x x x R 0.31586

L x Q x x x R 0.32187
Q x x x R x x L 0.32257
Q x x x R x x x x R 0.32257

I Q x x x R 0.32257
A x x I Q 0.35405

A x x x Q x x x R 0.35739
A x x x Q x x x R 0.36206
A x x I x x x x R 0.36602

I x x x x R x x x x R 0.37358
I Q x x x R 0.46057

Position
1 3 5 7 9 11 13 15 17 19 21

I x x A x x R 0.20418
I x x x x R R 0.20441

R x x L x R 0.20452
R x x x x R R 0.20463

R x x x R x x L 0.20503
R x x L x x x R 0.20523

R S x K 0.20591
K x x x x K K 0.20603

S A x x x x R 0.20669
Q x x x x R x L 0.20675

L x R x R 0.2068
Q x x x R x x K 0.20712

K x x x x R R 0.20719
K x x K K 0.20728

K x x x A x R 0.20756
Q x x F R 0.20756

S x x x S x x x x S 0.20778
Q x x x R x x x L 0.20785

A x x R x x x x R 0.20824
A x x R x x L 0.20836

Q x x x R G 0.20842
R x x R x x L 0.20861

L x K x x x R 0.20873
Q x x x x R x x L 0.2092

L K x x V 0.20943
R R x x L 0.20949

I x A x x R 0.20975
K x L x x V 0.21005

Y x x x L x K 0.21008
S A x x I 0.21018

A x x I x x A 0.21058
R x x x L V 0.21108

K x x x R x K 0.21109
R x x x x R x x x x L 0.21124

I x x A x R 0.21167
R G x x x R 0.2119
R x x x A x x R 0.21192
I x x x F R 0.21198

R R x x x G 0.2122
I x x x x R x F 0.21232

K x x x A R 0.21232
S x x x I Q 0.21242
S x x x I x R 0.21247

K x x K x x x R 0.21255
Q x x x x G x x x R 0.21268

K x x x A x x K 0.21276
A x x x Q x x Y 0.2128
E x x x x W x K 0.21283

R x x K x R 0.21308
A x x x x A x R 0.21378
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(Hamilton, Reddy, & Ben-Hur, 2011). However, with the cascaded 1 
classification approach with a Gaussian kernel, the results are sig-2 
nificantly better. Even though the AUC for the position independ-3 
ent 1-spectrum features is higher than that of the position depend-4 
ent features, the AUC0.1 was higher for position dependent features 5 
(29.1) in comparison to the simple 1-spectrum features (26.6). 6 

In order to obtain a better understanding of what our classifier 7 
picks up, we considered the proteins that are not known to bind to 8 
CaM and ranked that list according to the score provided by our 9 
classifier.  We then tested for enrichment of GO terms of segments 10 
of that list:  the first 1000 proteins, proteins 1001 - 2000 etc., using 11 
the GOrilla tool (Eden, Navon, I., Lipson, & Yakhini, 2009).  For 12 
the first 1000 we found enriched terms that are in agreement with 13 
known functions of CaM binders (Reddy, Ben-Hur, & Day, 2011):  14 
In GO molecular function, transcription function activity, and 15 
CaM-dependent kinase activities were the most highly enriched 16 
with adjusted p-values below 10-10.  All other enriched terms were 17 
related to these except for "inward rectifier potassium channel 18 
activity" which had an adjusted p-value of 0.02.  In GO biological 19 
process namespace all the terms except for "response to carbohy-20 
drate stimulus" (adjusted p-value 0.02) were related to phosphory-21 
lation and various regulatory processes.  In analyzing enrichment 22 
for size-1000 chunks we found that the p-values for these functions 23 
and processes went down as we went down the ranked list, and for 24 
proteins ranked 5000-6000, no terms showed enrichment.  25 

CONCLUSIONS & FUTURE WORK 26 
We have presented a novel MIL algorithm for CaM binding site 27 
prediction called MI-1 SVM, and shown its performance ad-28 
vantages in comparison to the standard MIL SVM and regular 29 
SVM, which was used in previous work. Our new MIL formula-30 
tion captures the minimal constraints that a good binding site clas-31 
sifier needs to have, and we believe this is the reason for its better 32 
accuracy. Not only that, it also runs more than twice as fast as 33 
standard MIL SVM (running time on a dataset of 16,060 windows 34 
was 510.5s for MI-1, 1059.1s for mi-SVM, and 348.3s for vanilla 35 
SVM).   36 
Expressing binding site prediction as an MIL problem is a natural 37 
way to incorporate uncertainty about binding site location, and our 38 
results show that this allows the classifier to “align” binding sites 39 
and learn position-dependent motifs that characterize the binding 40 
site. The proposed scheme also shows its efficacy in prediction of 41 
CaM binding proteins.  42 

In general, binding sites in proteins or nucleic acids are not 43 
contiguous in sequence as they are in CaM binding proteins. MI-1 44 
SVM can be extended to solve the generic problem of binding site 45 
prediction by using sequence-based features that capture the non-46 
contiguous nature of binding sites.  Currently, MI-1 SVM gener-47 
ates the CaM binding propensity along a protein’s length and can-48 
not explicitly identify multiple binding sites. Identifying the num-49 
ber of binding sites in a protein remains for future work. 50 
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