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Abstract

This paper presents a novel partner-specific protein-protein interaction site predic-

tion method called PAIRpred. Unlike most existing machine learning binding site pre-

diction methods, PAIRpred uses information from both proteins in a protein complex to

generate predict pairs of interacting residues on the two proteins. PAIRpred captures

sequence and structure information about residue pairs through pairwise kernels that

are used in training a support vector machine classifier. As a consequence, PAIRpred

presents a more detailed model of protein binding, and offers state of the art accuracy

in predicting binding sites at the protein level as well as inter-protein residue contacts

at the complex level. We demonstrate PAIRpred’s performance on Docking Benchmark

4.0 and recent CAPRI targets. We present a detailed performance analysis outlining the

contribution of different sequence and structure features, together with a comparison to
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a variety of existing interface prediction techniques. We have also studied the impact of

binding-associated conformational change on prediction accuracy and found PAIRpred

to be more robust to such structural changes than existing schemes. As an illustration

of potential applications of PAIRpred, we provide a case study in which PAIRpred is

used to analyze the nature and specificity of the interface in the interaction of human

ISG15 protein with NS1 protein from influenza A virus. Python code for PAIRpred is

available at: http://combi.cs.colostate.edu/supplements/pairpred/.

1 Introduction

Proteins form the functional backbone of all living cells. They are involved in a variety of

cellular functions and processes ranging from cell signaling and transportation to structural

stability and gene expression control. Most protein functions are possible only through the

interaction or binding of multiple proteins, and as a consequence, the study of protein bind-

ing is important in understanding protein function and disease mechanism as well as for drug

design, discovery and effectiveness studies. The regions where binding occurs can be identi-

fied by analyzing the NMR or X-ray crystallography structures of bound protein complexes,

or using biological assays such as mutagenesis experiments. However, these techniques are

time consuming, difficult, and expensive to perform. As a result, computational methods

for predicting the binding sites in protein-protein interactions are of great importance to

help guide biological or structural biology efforts. However, the computational prediction

of protein binding sites from their unbound structures or sequences is a complicated task

owing to the large variety of physio-chemical phenomena involved in the process, not all of
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which are fully known or thoroughly understood [1]. For example, the conformation of two

proteins in their bound state can be very different from their unbound configurations [2, 3].

Furthermore, protein molecules are in a constant state of motion in which both the backbone

and side chains of residues exhibit significant flexibility [4, 5].

The problem of predicting binding regions in protein complexes from the unbound struc-

tures or sequences of the proteins involved in the complex has two flavors:

1. Partner-independent prediction: Given a protein A, find whether a residue a in the

protein is involved in an interaction with any other protein.

2. Partner-specific prediction: Given proteins A and B, find whether a residue a in A

interacts with residue b in B upon the formation of the complex A−B.

With this context in mind, we propose to differentiate between a binding site on a protein

and the interface in a complex as follows: the region on a protein that is involved in an

interaction with another protein is called its binding site, whereas, the group of interacting

residues in a complex constitute the interface of the complex. Note that, given the interface of

a complex, it is trivial to determine the binding region on each protein in the complex whereas

the inverse is not. Thus, partner-independent predictors can only find protein binding sites

whereas partner-specific predictors can provide information about both interfaces and the

binding sites on the individual proteins.

A number of partner-independent methods have been proposed. However, in this paper,

we focus on partner-specific prediction only. For reviews of partner-independent predictors,

the interested reader is referred to [1, 6–8].

Partner-specific predictions provide more information about the nature of the complex as
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they can tell which residues in one protein interact with which residues in the other protein.

These more detailed predictions can then be used, for example, to enumerate the distinct

binding modes of a protein and to find out whether a protein can bind two other proteins

simultaneously or not. Furthermore, partner independent predictors ignore the fact that

the binding propensity of a residue is dependent upon the nature and local environment of

residues in its target protein. As a consequence, partner-specific interface predictors can be

expected to be more accurate in comparison to binding site predictors, as it presents a more

complete model of protein binding. This has been demonstrated by Ahmad et al. [9], and

the results presented in this paper confirm these findings.

Existing techniques that can be used for the partner-specific prediction of interfaces can

be divided in to three classes:

Docking methods: The objective of protein-protein docking methods is to predict the three

dimensional structure of a macromolecular complex given the unbound structures of

its constituent proteins. Existing methods for protein-protein docking include ZDOCK

[10], HADDOCK [11] and RosettaDock [12]. For further details on different docking

methods, the interested reader is referred to a recent review [13]. Docking methods

typically produce a large number of putative complexes which are then ranked using a

ranking criterion to identify the near-native structure. Once the predicted structure of a

protein complex is available from docking, the binding interface can be easily recovered.

However, docking solves a more general and complex problem than interface prediction

as its primary objective is to construct the correct three dimensional structure of the

protein complex. Docking methods are hampered by a lack of complete understanding
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of the factors involved in complex formation such as binding associated conformational

changes [1]. As a consequence, docking methods do not fare well in cases with large

conformational change. For example, ZDOCK is able to find near-native structures

for 33 rigid-body complexes but for only two non-rigid body complexes in its top 10

predictions on a data set of 124 rigid and 52 non-rigid complexes [10]. Docking methods

can benefit from binding site predictions as the correct identification of the interface of

the complex can limit the degrees of conformational freedom in docking. Some machine

learning schemes such as have been used for the scoring of docking conformations to

predict which one is closest to the native structure [14, 15]. Some docking methods

employ partner-independent predictors to accomplish this. However, partner-specific

interface predictions can be expected to play a better role [16].

Template based methods: With the growth in the number of protein complexes in PDB,

both template based interface predictors and template based docking schemes have

attracted attention. In these methods, a protein complex is modeled using sequence or

structural similarity to a known template protein complex. Template based methods

can either use sequence or structural homology or interface similarity [17]. However,

these methods are applicable only when template complexes or interfaces exist for a

query complex. A recent comparison between template based and docking methods

shows that both types of methods have comparable performance [18].

Machine learning methods: Direct prediction of interfaces using machine learning tech-

niques is a relatively unexplored research area and the accuracy of existing methods

in this category is low. Unlike template based methods, machine learning based tech-
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niques, depending upon the features used for the prediction, are also applicable in

cases where template similarity of the query proteins to known interfaces cannot be

established. In this work, we focus primarily on machine learning methods.

One of the first approaches to perform partner-specific binding site predictions is In-

Site [19]. InSite models interactions at the motif or domain level, and predicts pairs of

interacting motifs that best explain a given protein-protein interaction network. InSite does

not use information about known interaction sites, and is limited by the richness of the motif

library and its coverage across a given protein. Finally, it is more valuable to obtain binding

site information at the residue level, as it allows for a more detailed understanding of the

interaction.

Recently, Ahmad and Mizuguchi investigated the impact of performing partner-specific

versus partner-independent binding site prediction [9]. Their analysis of the binding propen-

sities of residue pairs in protein-protein interfaces clearly shows that the binding propensity

of a residue is strongly dependent upon its partner in other proteins. On this basis, they

hypothesized that considering residue pairs on interacting proteins in binding site prediction

can improve performance and found out that this is in fact the case. Their neural network

ensemble predictor (PPiPP) employed position specific scoring matrix and amino acid com-

position features. However, PPiPP’s accuracy is low with area under the Receiver Operating

Characteristic curve [20] of 72.9. The sequence-based nature of PPiPP allows the method

to be applied to proteins for which only the sequence is known but at the same time it is

unable to utilize the wealth of information contained in protein structures.

To the best of our knowledge, no structure based machine learning scheme for partner-
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specific protein interface prediction exists in the literature. In this paper, we present a novel

partner-specific SVM based interface predictor called PAIRpred (Partner-specific interacting

residue pred ictor) that uses both sequence information and features computed from the

unbound structures. We present performance analysis of PAIRpred at both the complex

level, i.e., for the prediction of interfaces, and at the protein level, i.e., for the prediction of

binding sites in the individual proteins in the complex using Docking Benchmark 4.0 [21]

and independent test complexes from the CAPRI experiment [13]. At the protein level, we

compare PAIRpred’s performance to the binding site predictor PredUS [22] and the protein

level results from PPiPP [9]. At the complex level, we compared against the docking method

ZDOCK [10] and PPiPP [9]. We show that considering information about the binding

partner of a protein enables more accurate prediction of its binding site. Furthermore, we

also study the relation between PAIRpred’s performance and the degree of binding associated

conformational change.

2 Methods

2.1 Data and pre-processing

In the development of PAIRpred, we have used the protein-protein docking benchmark data

set 3.0 (DBD 3.0) [21]. This data set has also been used in the performance analysis of

PPiPP [9] and allows a direct performance comparison. DBD 3.0 contains 124 non-redundant

complexes of pairs of proteins for which both the bound and unbound X-ray crystallography

structures are known. The proteins structures in DBD 3.0 have resolutions better than 3.25
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Å and a minimum sequence length of 30. No two complexes in DBD 3.0 share the same

SCOP [23] family-family pair [24] and have sequence identity of more than 30% in both

chains. Further testing was performed on version 4.0 of DBD which contains a total of 176

complexes including those already in DBD 3.0.

2.2 Interacting residue-pair definition

We define two residues belonging to two different proteins in a complex to be interacting if

the distance between any two heavy atoms of those residues in the bound conformations of

their proteins is less than or equal to 6.0 Å. All other residue pairs from the two proteins

on that complex were taken as negative examples. Similar definitions have been used in

previous studies (see [9] and references therein). Defining interacting residues in this way

resulted in a total of about 11,500 positive examples in DBD 3.0, i.e., 93 interacting residue

pairs per complex on average. The average number of residues pairs, in overall, for a complex

is around 67,000.

2.3 Feature extraction

We extracted both sequence and structure features at the residue level from the unbound

structure of each protein. When the three dimensional of proteins forming a complex is

not available, PAIRpred can make predictions based on its sequence alone. We have used

a number of existing programs and methods from the literature to extract features from

protein sequences and structures (see Figure 1).

• Structure based features
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The following features have been computed directly from the structure.

Relative Accessible Surface Area (xrASAa ) The relative accessible surface area (rASA)

from a given protein structure was computed using STRIDE [25].

Residue depth (xRDa ) Residue depth is defined as the minimum distance of a residue

from the surface of the protein and has been computed using MSMS [26]. The

residue depth values produced by MSMS were normalized to have the range from

0 to 1. xRDa and xrASAa are combined to form a single surface exposure feature

denoted by xexpa . We found that residue depth carries complimentary information

to that in rASA for residue interaction prediction.

Half Sphere Amino Acid Composition (xHSAACa ) Hamelryck [27] found that the

geometry and physiochemical characteristics of the regions in the direction of the

side chain of a residue (called the ‘up’ direction) and in its opposite direction

(called the ‘down’ direction) can be very different from each another. Based upon

this observation, we computed a feature (called HSAAC) that captures the amino

acid composition in the direction of the side chain of a residue xHSAACu
a and in

the direction opposite to the side chain xHSAACd
a . The amino acid composition

in a direction is defined as the number of times a particular amino acid occurs

in that direction within a minimum atomic distance threshold of 8.0 Å from the

residue of interest. Thus, HSAAC combines surface accessibility and amino acid

composition within the neighborhood of a residue. These amino acid composition

vectors in the two directions are then normalized to have unit norm to get xHSAACu
a

and xHSAACd
a which are then concatenated to get xHSAACa . We utilized Biopython
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(Cock et al., 2009) to compute xHSAACa .

Protrusion Index (xCXa ) The protrusion index of a non-hydrogen atom is defined as

the proportion of the volume of a sphere with a radius of 10.0 Å centered at that

atom that is not filled with atoms [28]. The protrusion index has been calculated

using PSAIA [29]. The protrusion index for single residue is a 6 dimensional

vector comprising the mean, standard deviation, maximum and minimum of the

protrusion values of all atoms in the residue along with the mean and standard

deviation of the protrusion values of only its side chain atoms. Each element of

this vector is normalized to have the range from 0 to 1.

• Sequence based features

We ran PSI-BLAST [30] against the non-redundant ‘nr’ database [31] to compute the

Position Specific Scoring Matrix (PSSM) and the Position Specific Frequency Matrix

(PSFM) for a given protein. The following sequence based features are then computed:

Profile Features (xPSSMa , xPSFMa ) In order to extract the profile features for a residue

from the PSSM, we took the PSSM columns within a length 11 window centered

at that residue. This 20× 11 matrix is converted to a single 220 dimensional unit

vector denoted by xPSSMa . xPSFMa is constructed in a similar manner from the

PSFM.

Predicted Relative Accessible Surface Area (xprASAa ) To determine whether pre-

dicted rASA can be used instead of the true rASA, we used SPINE X [32] to

predict rASA using the PSI-BLAST data. The predicted rASA is denoted by

prASA to emphasize the fact that it has been predicted from sequence.

11



2.4 Pairwise classification using SVMs

We model the interface prediction problem as a classification problem in which a classification

example i is a pair of residues from two different proteins in a complex. Each example i is

represented by ((ai, bi), yi), where (ai, bi) is a pair of residues and yi is the associated label,

indicating whether the two residues interact (yi = +1) or not (yi = −1). Figure 2 illustrates

this concept.

As a classifier, we use a support vector machine (SVM) [33] trained over a set of N

labeled examples. An SVM finds the optimal separating boundary between two classes by

simultaneously maximizing the margin between them and minimizing the cost of misclas-

sification over the training data. For an overview of SVMs in computational biology, the

interested reader is referred to [34]. Due to its large-margin nature, an SVM can offer good

accuracy over previously unseen examples during testing.

In order to use an example in training or classification, a classifier needs the feature repre-

sentation for the pair of residues in that example. However, it is easier and computationally

more efficient to extract features for a single residue on a protein than for a pair of residues

on two different proteins. Thus, we would like to be able to use the residue level features

directly to generate predictions at the residue pair level. This is where our use of SVMs for

classification offers a significant advantage in comparison to other classifiers. Unlike other

classifiers, such as the neural networks employed in PPiPP, SVMs can operate without re-

quiring the explicit feature representation of an example by using a kernel function [35]. A

kernel function is, in essence, a dot product that measures the degree of similarity between

two examples. In this work, we construct a pairwise kernel of the form K((a, b), (a′, b′))
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which can directly score the similarity between examples (a, b) and (a′, b′) by comparing the

feature representations of individual residues in these examples. The pairwise kernel elim-

inates the need of constructing an explicit feature representation of each example because

the scoring function of the SVM can be expressed only in terms of this pairwise kernel as:

fAB((a, b)) =
N∑
i=1

αiyiK((ai, bi), (a, b)). In this scoring function, the values of αi are obtained

through training.

One of the interesting features of using pairwise kernels in the SVM is that these kernels

can themselves be built from kernels over individual residues. Such residue level kernels,

denoted by Kr (a, b), compare the explicit feature representations of residues a and b to score

the degree of similarity between them. The problem of constructing pairwise kernels from

kernels over individual objects has been studied in the machine learning and bioinformatics

communities [36–39]. We constructed the pairwise kernel Kpw for our SVM as the additive

combination of one or more of the following pairwise kernels from the literature:

Ktppk((a, b), (a
′, b′)) = Kr(a, a

′)Kr(b, b
′) +Kr(a, b

′)Kr(b, a
′)

Kmlpk((a, b), (a
′, b′)) = (Kr(a, a

′)−Kr(a, b
′)−Kr(b, a

′) +Kr(b, b
′))2

Ksum((a, b), (a′, b′)) = Kr(a, a
′) +Kr(b, b

′) +Kr(a, b
′) +Kr(b, a

′).

Here, Ktppk is the tensor product pairwise kernel (TPPK) proposed by Ben-Hur and

Noble [36]. TPPK detects high similarity between examples (a, b) and (a′, b′) if a, expressed

in terms of its feature representation, is similar to one of the residues in (a′, b′) and b is also

similar to the other residue in the other example. It can be shown that the feature space of

TPPK consists of products of features of the underlying residue kernel Kr.

Kmlpk((a, b), (a
′, b′)) is the metric learning pairwise kernel (MLPK) [37]. If the feature
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representation of a residue a is given by φ(a), then the MLPK kernel can be written as:

Kmlpk((a, b), (a
′, b′)) = ((φ(a)− φ(b))T (φ(a′)− φ(b′)))2.

This shows that the MLPK is a homogeneous polynomial kernel of degree 2 between pairs

after mapping a pair (a, b) to the vector Φmlpk((a, b)) = φ(a)− φ(b). Vert et al. have shown

that MLPK performs slightly better than TPPK for predicting protein-protein interactions

and that their additive combination performs better than either of the kernels [37].

Given the feature space representation φ(a) of a residue a, the direct sum pairwise kernel

can be written as [38,40]:

Ksum((a, b), (a′, b′)) = (φ(a) + φ(b))T (φ(a′) + φ(b′)).

This shows that the sum kernel uses the underlying feature map Φsum((a, b)) = φ(a) + φ(b).

We found that the simple kernel Ksum performed better than both TPPK and MLPK for

our problem. However, the additive combination of the three kernels performed better than

any of the individual kernels (see the results section for more details). Finally, each pairwise

kernel Kpw is normalized as K((a, b), (a′, b′)) =
(Kpw((a, b), (a′, b′)))√

Kpw((a, b), (a, b))Kpw((a′, b′), (a′, b′))
for

use in the SVM.

To produce a pairwise prediction for an example (a, b), PPiPP [9] concatenates the feature

representation of the two residues in the example in both orders
[
φ(a)
φ(b)

]
and

[
φ(b)
φ(a)

]
. In

comparison to PPiPP, our pairwise kernel based approach is computationally more efficient

as it requires no duplication of the data. Moreover, pairwise kernels in our formulation

directly model the inter-dependencies within individual feature components.

The residue kernel Kr used in constructing the pairwise kernel in PAIRpred is itself an

unweighted summation of one or more of the following kernels, which are computed using
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the features described in section 2.3:

Kprofile(a, b) = g(xPSSMa , xPSSMb ; γPSSM) + g(xPSFMa , xPSFMb ; γPSFM)

KHSAAC(a, b) = g(xHSAACa , xHSAACb ; γHSAAC)

KprASA(a, b) = g(xprASAa , xprASAb ; γprASA)

Kexp(a, b) = g(xexpa , xexpb ; γexp)

KCX(a, b) = g(xCXa , xCXb ; γCX).

In the above equations, g(a, b; γ) = exp(−γ‖a−b‖2) is the Gaussian kernel. The γ parameter

in the Gaussian kernel controls the decay of the exponential function. If γ is set too high or

too low, the exponential function can saturate at 0 or 1 which will inhibit effective learning

from the training data. We chose the values of these parameters so that, for the majority of

non-identical input vectors for a kernel, the similarity score does not saturate and maintains

good dynamic range. This heuristic is inspired by the literature about parameter selection

in radial basis function neural networks [41]. Once chosen in this manner, these parameters

were not changed to optimize accuracy. The selected values of these parameters are as

follows: γPSSM = γPSFM = γHSAAC = 0.5, γCX = 1.0 and γexp = γprASA = 3.0. As discussed

in the results section, these values give good performance over test data. Training and

classification has been performed using the SVM implementation in the machine learning

library PyML [42].

2.5 Post-processing

A binding site or interface is a collection of spatially neighboring residues whose binding

propensities are correlated. Keeping this in mind, we smoothed the prediction score for a
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pair of residues by averaging prediction scores within their local neighborhoods through the

following post-processing step:

f ′AB((a, b)) =
1

2


∑

b′∈N(b)

fAB((a, b′))

|N(b)|
+

∑
a′∈N(a)

fAB((a′, b))

|N(a)|

 , (1)

where fAB((a, b)) is the raw PAIRpred discriminant score from the trained SVM and N(r)

is the set of the 10 neighboring residues of residue r on the same protein including r itself.

Thus the post-processed scores is the sum of the averages of the prediction scores of a residue

on one protein with a set of residues on the other protein. As discussed in the results section,

this simple post-processing scheme improves the prediction performance significantly.

2.6 Performance evaluation

Performance evaluation was carried out in two stages. In the first stage we compared different

kernel designs, and residue-level features using five-fold cross-validation at the complex level.

In this cross-validation procedure, examples from all complexes in our data set were divided

into 5 folds such that all examples from a complex are found in exactly one fold. To reduce

computational time during model selection, the 5 fold cross-validation was done using a

class-size balanced sample from DBD 3.0 in which the number of randomly chosen negative

examples for a complex is equal to the number of positive examples in it. For each fold,

the value of the parameter C that controls the cost of misclassification over training data in

the SVM was selected by performing a similar nested 5-fold cross-validation. The value of

C was selected from {0.1, 1.0, 10.0, 100.0}. The classification function values and the known

true labels of the examples were used to compute the Receiver Operating Characteristic

(ROC) curve for each complex. The average of the area (expressed as a percentage) under
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the ROC curve for all complexes, labeled as AUC, has been used as the performance statistic

for selecting the optimal model.

In the second stage of performance evaluation, we performed a leave-one-complex-out

cross-validation analysis with the optimal kernel design selected in the first stage. In this

cross-validation procedure, a classifier is trained on a balanced set of examples extracted

from all but one of the complexes, and testing is performed on all pairs of residues from the

left-out complex. This evaluation protocol is identical to the one used for PPiPP [9] and

allows a direct and fair comparison between the two methods. The average area (expressed as

percentage) under the ROC curves for all complexes (AUC) is used as a performance metric

as it allows a quantitative comparison with other interface prediction methods. However,

AUC scores are not easy to interpret in this setting. In cases with highly unbalanced data

with a big difference in the number of positive and negative test examples as we have here,

AUC can give a false impression of accuracy. For these reasons we propose a measure of

accuracy that is specifically designed for this domain. Our measure, which we call RFPP

(rank of the first positive prediction), is defined as follows: RFPP(p) = q, if p % of the

complexes tested have at least one true positive interacting residue pair among the top q

predictions. Thus, an ideal classifier will have RFPP(100) = 1, i.e., in every complex, the

top scoring prediction from the classifier belongs to the interface. In comparison to an ROC

curve, this measure is more informative for the biologist as it tells us directly how often the

top ranking predictions can be expected to correspond to known interactions.

We also evaluate the performance of PAIRpred for binding site prediction at the single

protein level (i.e., binding site prediction) and compare it to existing partner-independent

methods. Pairwise predictions of interacting residues at the complex level (from Equation
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(1)) are converted into predictions at the protein level for each protein as follows: fA(aj) =

maxbj∈B f
′
AB((aj, bj)) and fB(bj) = maxaj∈A f

′
AB((aj, bj)). AUC scores for an individual

protein can then be easily computed.

3 Results and Discussion

3.1 Comparison of residue and pairwise representations

We analyzed and compared different feature representations and pairwise kernel formulations

in order to see the contribution of different features towards prediction accuracy and the im-

pact of pairwise kernel design. Figure 3 shows the complex-wise averaged ROC curve for

different feature and kernel combinations. In order to compare different feature representa-

tions, we chose to use Kpw = Kmlpk +Ktppk +Ksum as the pairwise kernel. Our first step was

to analyze the accuracy when our method is restricted to using sequence-based features only,

which include sequence profile and relative accessible surface area predicted from sequence.

As shown in figure 3a, profile features alone give an AUC of 79.4, and adding the predicted

rASA (i.e., Kr = Kprofile+KprASA) increases the AUC to 80.4. For the profile-based features

we found that the combination of PSSM and PSFM features performed slightly better than

either of the two alone (results not shown).

The addition of structure-based features provides a big boost in performance: the com-

bination of true surface accessibility features (Kexp) with the profile features (Kprofile) gives

an AUC of 86.2 compared to 79.4 for the profile-based features alone and 80.4 using the

combination of profile and predicted rASA features. Such an improvement is to be expected
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because most of the residues involved in the interaction have high surface accessibility. How-

ever, the use of predicted rASA did not result in such a big increase. This is because

the protein-wise averaged correlation between predicted and true rASA values for binding

residues is low (r = 0.56, against r = 0.76 for non-interacting residues). Thus, the use of a

better sequence based predictor of surface accessibility can help improve the accuracy of the

sequence based predictions in future.

Addition of HSAAC and protrusion index based features (KHSAAC +KCX) improves the

accuracy of the method even further (AUC of 87.1). For the rest of the analyses in the paper

we have used Kr = Kprofile +Kexp +KHSAAC +KCX .

The choice of a pairwise kernel has a strong influence on accuracy. Figure 3b show the

ROC curves for different pairwise kernel formulations. Kmlpk, Ktppk, and Ksum produce AUC

scores of 82.0, 86.7, and 86.9 respectively, while adding all three provides an AUC score of

87.1. For the rest of the analyses in the paper we have used Kpw = Kmlpk +Ktppk +Ksum.

In order to test the variability of the results, the cross-validation procedure in model

selection was repeated 5 times with change both in the randomly selected negative examples

and the membership of complexes in different folds. We then evaluated the mean and

standard deviation of different cross-validation runs. The maximum standard deviation in

the AUC scores for any kernel combination was 0.2. This shows that these results are robust

to changes in the training data.
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3.2 Prediction using residue exposure alone

As discussed above, residue exposure features result in a big improvement in accuracy. To

explore the contribution of the residue exposure features (rASA, reside depth, and mean pro-

trusion), we computed the sum of the residue exposure of the two residues in each example.

Using this combination as a ranking criterion we computed the AUC score for each complex.

This näıve way of classification yields some interesting results. The average AUC scores for

all complexes from rASA, reside depth (RD) and the mean protrusion value are 71.9, 69.4

and 71.2 respectively. These results are only marginally inferior to the leave-one-complex-

out cross-validation results from PPiPP (AUC = 72.9) [9]. Since rASA and RD are both

measures of the surface accessibility of a residue, the AUC values for these features clearly

reflect the known fact that surface residues are more likely to participate in protein-protein

interactions. The AUC score of the protrusion index shows that the residues that interact

have few atoms around them. This includes surface atoms, and especially those atoms on

the surface that lie in cavities or protrude out from their local neighborhood. The protrusion

index captures more local shape information than rASA and the two can be complementary

to one another. The fact that pairwise summation of surface exposure features provides good

results explains why the pairwise sum kernel Ksum was able to perform better than the other

two pairwise kernels.

The same ranking criterion over the relative accessible surface area predicted from se-

quence using SPINE X gives an AUC of only 0.56. This clearly shows that these predictions

need to be more accurate to be effective in finding interfaces in protein complexes.
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3.3 Results for leave-one-complex-out cross-validation

For comparison with other methods we used the optimal kernel combination found through

kernel evaluation (section 3.1) and recomputed its performance using the leave-one-complex-

out cross-validation protocol detailed in Section 2.6. Results of this analysis are reported in

table I. The AUC scores for interface prediction, averaged across the 123 complexes in DBD

3.0, for sequence and structure kernels are 80.9 and 87.3, respectively. It is interesting to

note that these scores from leave-one-complex-out cross-validation over all examples are very

close to those obtained with the balanced sample. Evaluation over all the 176 complexes in

DBD 4.0 gives an AUC score of 87.0 with the structure kernel.

At the protein level, the AUC scores of PAIRpred for sequence and structure kernels for

DBD 3.0 are 70.8 and 77.0 (with post-processing), respectively. It can also be noted that

post-processing increases the performance of the method. This is particularly true at the

protein level.

3.4 Comparison with PPiPP and ZDOCK

PPiPP [9] is a recently proposed sequence based method for partner-specific predictions

that uses an ensemble of neural networks trained with a more elaborate version of our

profile representation with different window sizes [9]. Table I shows the results of leave-

one-complex-out cross-validation for DBD 3.0 using PPiPP. Even with the sequence features

alone, PAIRpred gives better AUC and RFPP scores than PPiPP. As shown in figure 4a,

PAIRpred’s performance at the complex level (i.e., for interface prediction) is superior to

PPiPP not only in overall AUC but also in the number of true positives within the first 10%
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false positives.

PPiPP offers better accuracy than other published sequence based methods for binding

site prediction such as PSIVER and SPPIDER (results given in [9]). PAIRpred’s performance

at the protein level (i.e., for binding site prediction) is also superior to PPiPP using either

sequence features alone or in conjunction with protein structure (see Table I and Figure 4b).

We also compared PAIRpred with the docking method ZDOCK [10] over the 176 com-

plexes in DBD 4.0. For this purpose, we have used, for each complex, the top 2000 predictions

in the 15-degrees sampling data available online for ZDOCK v. 3.02. For each ZDOCK pre-

diction for a complex, we computed the pairwise minimum inter-atomic distance between

all residues of the two proteins in the predicted complex. The inverse of this distance was

used as a ranking criterion in the evaluation of the AUC score at the complex level. The

AUC score of a ZDOCK prediction tells us how good that prediction is at identifying the

known interface in the complex and is directly comparable to the AUC scores given earlier for

PAIRpred and PPiPP. For a given complex, we computed the maximum AUC score in the

top N ZDOCK predictions and then averaged these scores across all complexes for a given

value of N to obtain the results shown in Figure 5. These results show that PAIRpred is

better than the best of the top 11 ZDOCK predictions. The AUC score of the top prediction

by ZDOCK is roughly comparable to that of PPiPP.

3.5 Comparison with partner-independent predictions

In order to test the hypothesis that a partner-specific predictor can perform better than

partner-independent predictors, we developed an SVM based binding site predictor (referred
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to as vanilla SVM ) using the same structural features as in PAIRpred and compared its

leave-one-protein-out cross validation performance to the PAIRpred results at the protein

level. Figure 4b shows the ROC curve for vanilla SVM which gives an AUC score of 72.6.

PAIRpred’s performs much better than the vanilla SVM. This clearly shows that partner-

specific predictors can offer superior performance in comparison to partner-independent ones

even when the same residue level features are used. Moreover, PAIRpred’s AUC score of

70.8 with the sequence features alone is only marginally inferior to vanilla SVM even though

the latter employs structure based features. As a matter of fact, PAIRpred with sequence

features alone gives better true positive rates than the vanilla SVM consistently for false

positive rates less than 0.4.

At the protein level, PAIRpred’s performance using structure based features can be

roughly contrasted to PredUS [22], a recently published structure based binding site pre-

dictor. PredUS performs better than other similar predictors available in the literature and

gives an AUC score of 73.9 over 188 chains in DBD 3.0. It must be noted that a direct com-

parison between the performance of the two methods is not possible because of differences in

their evaluation data sets, interface definitions, and cross-validation protocols. PAIRpred’s

performance with structure features can be expected to be equal or slightly better than that

of PredUS as PAIRpred gives an AUC score of 77.0 over 248 proteins in DBD 3.0.

3.6 Spatial proximity of PAIRpred predictions

In order to see whether the top predictions by PAIRpred are spatially close, we compared

pairwise distances between residues in our top predictions with a random sample of residues.
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More specifically, we computed the pairwise distances among the top 20 residue predictions

from PAIRpred for each protein and also between the remaining pairs of residues from each

protein. The average of the pairwise distances in the top predictions is 15.6 Å and 20.1 Å for

the remaining pairs. These distances are significantly different (with a p-value of 4.7× 10−25

using the Wilcoxon Rank Sum test on all complexes in DBD 4.0). This indicates the top

PAIRpred predictions exhibit spatial clustering.

Furthermore, we found that the difference between the mean pairwise distances across

the top predictions and the remaining residues in a protein is inversely correlated with the

its AUC (correlation coefficient of -0.49, 2 tailed p-value of 1.1×10−21). Thus, this difference

in distances is a rough indication of the quality of prediction.

3.7 Effects of conformational change

Proteins can undergo significant conformation change upon binding as buried residues can

become exposed and vice versa. In order to observe the effects of the degree of conformational

change on the accuracy of PAIRpred, we plotted the AUC of a complex against the root

mean square deviation (RMSD) between the bound and the unbound states over the interface

residue for in the complex. A large RMSD value for a complex corresponds to a large binding-

associated conformation change. Figure 6a shows that the accuracy decreases with increase

in conformational change. This effect was also observed for PPiPP. However, PAIRpred

performs much better than PPiPP for complexes with large conformational change. Based on

the degree of conformational change, the complexes in the docking benchmark datasets have

been divided into three categories: rigid body, medium difficulty and hard. Figure 6a shows
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the prediction performance across complexes in these categories. As expected, PAIRpred

performs better for rigid body complexes in comparison to the other two categories that

involve larger conformational changes.

We investigated the effects of conformational change on PAIRpred performance at the

residue level as well. As we had access to both the bound and the unbound states of each

protein, we were able to calculate the absolute difference in rASA for a residue between

the two states of the protein. A large difference is indicative of a large conformational

change in the environment around that residue. For a pair of residues we define the degree

of conformational change as the sum of the changes in the individual residues, and denote

it as ∆rASA(a, b). AUC exhibits a high negative correlation (see figure 6b) with ∆rASA

(correlation coefficient of -0.97, p-value of 1.5 × 10−3). AUC vs. change in residue depth

shows a similar trend. This demonstrates the inherent difficulty of predicting residue-residue

interactions in protein complexes that undergo a large conformational change. This difficulty

is exacerbated by the fact that there is only a small amount of training data (24 complexes

in DBD 4.0) available for such cases. Furthermore, the standard deviation of AUC scores

for complexes from the hard category in DBD 4.0 shown in figure 6a is much larger in

comparison to other categories. This suggests that effective handling of complexes with large

conformational change requires a larger number of training examples with this property.

3.8 Evaluation on CAPRI targets

In order to further analyze the performance of PAIRpred, we tested it on nine recent targets

from the Critical Assessment of Protein Interactions (CAPRI) experiment [13]. We used all
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heteromeric protein complexes published after 2007 for which both the bound and unbound

X-ray crystallography structures are available. For this task, PAIRpred was trained using

DBD 4.0, and results of this analysis are reported in Table II. This table shows that PAIRpred

is able to predict the interface with good accuracy for most targets. For seven out of these

nine targets, the top 15 PAIRpred predictions contain at least one true positive. It is

interesting to note that even for complexes involving large conformational changes, such

as 3BX1 and 2WPT, the first true positive lies within the top 10 predictions. PAIRpred

does not perform well on two targets: 3FM8 and 2VDU. These targets have proven to be

very challenging for docking methods as well: only 1% and 4% of the models predicted by

docking methods in CAPRI have an acceptable complex structure for 3FM8 and 2VDU,

respectively [43].

3.9 Application to Human ISG15-Influenza A NS1 interaction

Due to its partner-specific nature and state of the art accuracy, PAIRpred can be used

to study the nature and mechanics of an interface beyond what is possible with partner-

independent predictors. In this section, we demonstrate PAIRpred’s capabilities beyond the

simple prediction of an interface by using the interaction between ISG15 protein in human

and mouse and NS1 protein from Influenza A virus as a case study.

The influenza B virus is known to infect only human and non-human primates and the

cause of this specific behavior have been investigated in [44] through a study of the bound

and unbound structures of NS1 protein from the virus and the ISG15 protein in humans and

other species. We have used PAIRpred to study the binding between these two proteins and
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compare the findings from this computational analysis to the results published in [44].

We first predicted the interface of the complex from the unbound structures of the two

proteins using both PPiPP and PAIRpred and used the known interface to compare the per-

formance of the two methods. The unbound PDB structures of NS1 and ISG15 are available

as 1XEQ [45] and 1Z2M [46]. The complex structure (PDB ID: 3SDL) has two chains each

of NS1 and ISG15 [47]. There is no significant conformational change in NS1 upon binding

to ISG15 with only a disorder to order change in a short C-terminal polypeptide sequence.

ISG15 undergoes modest conformational change upon binding NS1 with a backbone RMSD

of 1.05 Å. We obtained the predictions from the unbound proteins by training PAIRpred on

DBD 3.0 to allow for a comparison with PPiPP, and used structure-based features. This

complex is not a part of training sets of PAIRpred or PPiPP. The AUC scores for PPiPP and

PAIRpred for this complex are 67.2 and 92.4, respectively. The first true positive detected

by PAIRpred is the top-most prediction, whereas the first true positive detected by PPiPP

occurs at rank 174. PAIRpred is able to find more than half of the interacting residue pairs

within its top 100 predictions (see Figure 7a). The predictions correspond very closely to

the interactions discussed in [44]. We also compared the interface prediction performance

of PAIRpred to that of ZDOCK for this complex by using the inverse of the inter-residue

distance from ZDOCK predictions as a ranking criterion as described in Section 3.4. It was

found that the AUC score from PAIRpred is better than the best of the top 13 ZDOCK

predictions for this complex.

Next we used, PAIRpred predictions in order to identify the residues that are crucial

for binding. Specifically, we conducted an in silico mutagenesis experiment in which we

changed the NS1: L88 residue involved in our top prediction (ISG15: L10, NS1: L88) to an
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alanine. We also recapitulated one mutagenesis experiments reported in (Guan et al., 2011)

which involved changing NS1: F34 (which also interacts with ISG15: L10) to an alanine.

The (ISG15: L10, NS1: F34) interaction is originally ranked 8th in PAIRPRed predictions

for this complex. We obtained the predicted structure after the mutations using I-TASSER

(Roy et al., 2010). In comparison to the wild-type predictions for (ISG15: L10, NS1: L88)

and (ISG15: L10, NS1: F34), we observed a decrease of 25% and 53% in prediction scores

for L88 and F34 mutations in NS1, respectively (see Figure 7b). The prediction scores for

other interacting residues were essentially unchanged. These results indicate that both these

residues are, as experimentally determined in [44], very important for this interaction.

As stated earlier, NS1 binds specifically to ISG15 from human and non-human primates

and does not bind to mouse ISG15. Guan et al. [44] attribute this binding specificity to

residues 47-52 and 76-80 in the sequence alignment of ISG15s from these three species.

We obtained the unbound structure of mouse ISG15 using I-TASSER. We then compared

the PAIRpred prediction scores for (human ISG15,NS1) complex to those from the (mouse

ISG15, NS1) interaction. This comparison allowed us to identify the ISG15 residues that are

interacting in (human ISG15, NS1) complex but undergo a large decrease in their prediction

scores in the (mouse ISG15, NS1) interaction. These locations (in order of decreasing mag-

nitude of change in predictions scores) are 76, 77, 72, 74 and 49. This strengthens the claim

made in [44].

These analyses clearly demonstrate the usefullness of partner-specific predictions gener-

ated from PAIRpred as the mutagenesis studies explained above cannot be performed with

conventional partner-independent predictors.
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3.10 Using PAIRpred

PAIRpred has been implemented in Python and its architecture allows extension in fu-

ture to include more residue-level features or pairwise kernels. Complete implementa-

tion of PAIRpred, together with the pre-trained classifier, can be downloaded at http:

//combi.cs.colostate.edu/supplements/pairpred/. PAIRpred users need to supply the

FASTA sequence files or, when available, the PDB format structure files as input. PAIR-

pred then automatically extracts features from these files and produces predictions using a

pre-trained SVM. Users also have the option of training the classifier on their own data sets.

PAIRpred generates its prediction for a complex as a simple text file which contains the

pairwise interaction scores for each pair of residues from the two proteins in the input. This

pairwise prediction file can then be used to generate protein-level binding site predictions

through scripts available as part of the PAIRpred package. PAIRpred implementation also

provides PyMOL scripts for visualizing top PAIRpred predictions both at the complex and

protein levels as shown in Figure 7a.

4 Conclusions

We have presented a new method for predicting the interface of a protein complex called

PAIRpred that offers state-of-the-art accuracy for both interface and binding site prediction.

The proposed scheme is able to make accurate predictions using either sequence information

alone or in conjunction with structure-based features. There are very few machine learning

based methods that perform partner-specific prediction of interactions, and PAIRpred pro-

vides a large improvement over the recently published PPiPP method. We investigated the
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merit of sequence and structure-based features and found that using structure provides a big

improvement in performance. Furthermore, the analysis of the accuracy of PAIRpred shows

much better scaling of performance with respect to the degree of conformational change

upon complex formation in comparison to PPiPP. However, there is still plenty of room for

improvement, especially for complexes that exhibit a large degree of conformational change

upon binding. In the future we plan on adding features to capture shape complementarity

between binding interfaces, information about correlated mutations [48,49], protein flexibil-

ity and predictors of degree of conformational change [50] in order to improve the predictions

even further. Moreover, PAIRpred can potentially improve the accuracy of docking methods

if used as a filter or by direct incorporation into the energy function [6].
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Figure 1 Residue-level feature extraction in PAIRpred. The feature representation for

residue a is denoted by xa. Different components of the feature representation are

denoted by the superscript (e.g., xrASAa indicates the relative accessible surface area for

residue a). Each box also indicates the program used to extract a given set of features.

Figure 2 Overview of PAIRpred. (i) Extract residue-level features from sequence and un-

bound structures (see Figure 1 for details). (ii) Construct pairwise kernel from the

residue-level kernel Kr(ai, aj). (iii) Use the pairwise kernel to train the SVM and

classify each residue pair in the query proteins.

Figure 3 Selecting the optimal sequence/structure representation by comparing ROC curves

for different kernel designs. Shown are the averaged ROC curves computed using 5-

fold cross-validation over complexes in DBD 3.0. The inset shows the true positive rate

(TPR) vs. false positive rate (FPR) for up to first 10 % false positives. The legend

shows the AUC scores for the different kernels used. (a) Results for different residue

kernels Kr using the pairwise kernel Kpw = Kmlpk + Ktppk + Ksum. The curves illus-

trate the increase in performance as additional structural information is added to the

sequence-based kernel. Recall that Kprofile is the PSI-BLAST profile kernel; KprASA

uses predicted rASA; Kexp is the residue exposure kernel; KHSAAC is the half-sphere

exposure kernel; KCX uses protrusion-index features. (b) Results for different pairwise

kernels Kpw with residue kernel Kr = Kprofile +Kexp +KHSAAC +KCX .

Figure 4 Comparison between PAIRpred, PPiPP [9] and vanilla SVM at the complex and

protein level predictions on DBD 3.0. PAIRpred-seq refers to PAIRpred based only on

sequence features.
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Figure 5 The maximum AUC from top N ZDOCK predictions in comparison to PAIRpred

and PPiPP [9].

Figure 6 Effect of conformational change on PAIRpred performance. (a) AUC vs. RMSD

for each complex in DBD 3.0 and the 53 new complexes in DBD 4.0 using leave-one-

complex-out cross-validation. The legend shows mean AUC and standard deviation

(within paranthesis) of complexes in each category for each data set. (b) Relationship

between AUC and the change in rASA (∆rASA). Residue pairs were binned into

groups based on their ∆rASA and the AUC score was computed for all the residues

within each bin using our 5-fold cross-validation scheme on DBD 3.0 complexes.

Figure 7 (a) PAIRpred predictions for human ISG15 and influenza B NS1 mapped onto the

3D structure of the complex (PDB ID: 3SDL). The red dotted lines indicate the true

positives in the top predictions with the width of the line proportional to the prediction

score. The circled area is expanded in (b). (b) Results of in silico mutagenesis. The

blue residues were changed to alanines. Notice the change in the prediction score

(indicated by the width of the orange dotted lines) for the mutated residues between

the wild-type (left) and the mutant (right).
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Table I: PAIRpred and PPiPP performance. We compare the performance of PAIRpred

and PPiPP [9] using Area Under the ROC Curve (AUC) and the rank of the first positive

prediction (RFPP). RFPP(p) indicates that p percent of the proteins achieve that level

of performance. For example, on DBD 4.0 without post processing, the second PAIRpred

prediction is part of the interface for 10% of the complexes. PAIRpred results are provided

for two residue kernels: the sequence-based kernel, and for the kernel that uses all the features

computed from sequence and structure.

Dataset Method 
RFPP (p) AUC 

10% 25% 50% 75% 90% Complex Protein 

DBD 3.0 

(124 complexes) 

PPiPP 9 19 78 297 760 72.9 66.1 

PAIRPred  

Kr = Kprofile + KprASA No post-processing 2 13 68 257 804 80.9 70.8 

Kr = Kprofile + Kexp + KHSAAC + KCX 
No post-processing 1 5 22 89 282 87.3 73.4 

With post-processing 1 3 16 103 272 88.7 77.0 

DBD 4.0 

(176 complexes) 
Kr = Kprofile + Kexp + KHSAAC + KCX 

No post-processing 2 6 19 75 340 87.0 73.1 

With post-processing 1 3 18 101 282 87.8 75.4 
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Table II: PAIRpred evaluation results on recent heteromeric protein complex targets from

CAPRI with both bound and unbound X-ray structures available. The degree of conforma-

tional change for the ligand and receptor proteins has been measured as the backbone root

mean square deviation. The maximum sequence identity of a protein from the CAPRI set

to any protein in DBD 4.0 has been calculated using local sequence alignment. The AUC

score for each complex and the rank of the first positive prediction (RFPP) is reported.

Complex ID in 

PDB 

Target ID 

in CAPRI 

Ligand 

Backbone 

RMSD (Å) 

Receptor 

Backbone 

RMSD (Å) 

Max. Seq Id. of 

ligand to DBD4 

Max. Seq Id. of 

receptor to DBD4 
AUC RFPP 

4G9S T58 0.3 0.7 28 % 27% 89.7 4 

4EEF T56 0.7 0.5 27 % 29 % 76.3 1 

3R2X T50 0.5 0.6 29 % 26 % 90.3 15 

3U43 T47 0.9 1.5 60 % 55 % 88.9 2 

2WPT T41 2.0 0.7 62 % 66 % 85.8 1 

3E8L T40 0.2 0.4 100 % 28 % 92.1 9 

3FM8 T39 0.0 1.6 28 % 25 % 79.6 71 

3BX1 T32 2.0 0.4 30 % 56 % 89.7 10 

2VDU T29 1.1 0.4 28 % 27 % 82.9 302 
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