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8 ABSTRACT: Metabolomic data are frequently acquired using chromatographi-
9 cally coupled mass spectrometry (MS) platforms. For such datasets, the first step in
10 data analysis relies on feature detection, where a feature is defined by a mass and
11 retention time. While a feature typically is derived from a single compound, a
12 spectrum of mass signals is more a more-accurate representation of the mass
13 spectrometric signal for a given metabolite. Here, we report a novel feature
14 grouping method that operates in an unsupervised manner to group signals from
15 MS data into spectra without relying on predictability of the in-source
16 phenomenon. We additionally address a fundamental bottleneck in metabolomics,
17 annotation of MS level signals, by incorporating indiscriminant MS/MS (idMS/MS) data implicitly: feature detection is
18 performed on both MS and idMS/MS data, and feature−feature relationships are determined simultaneously from the MS and
19 idMS/MS data. This approach facilitates identification of metabolites using in-source MS and/or idMS/MS spectra from a single
20 experiment, reduces quantitative analytical variation, compared to single-feature measures, and decreases false positive
21 annotations of unpredictable phenomenon as novel compounds. This tool is released as a freely available R package, called
22 RAMClustR, and is sufficiently versatile to group features from any chromatographic-spectrometric platform or feature-finding
23 software.

24Mass spectrometry (MS) has long been utilized for
25 detecting and quantifying small molecules, particularly
26 when coupled to separation tools such as gas chromatography
27 (GC), liquid chromatography (LC), or capillary electrophoresis
28 (CE). The strengths of these chromatographically coupled
29 mass spectrometry platforms have been leveraged toward global
30 metabolite profiling approaches, or metabolomics. The
31 development of electrospray ionization (ESI)1 was an
32 important technological milestone, which allowed for the
33 coupling of liquid separation methods to mass spectrometers.
34 This development obviated the volatility requirement imposed
35 by gas chromatography and supported development and
36 expansion of both metabolomics and proteomics. Electrospray
37 is considered a “soft” ionization technique, by which the
38 molecular ion of the compound is generally more dominant
39 than that achieved using “hard” ionization methods such as
40 electron impact ionization (EI). However, the ESI process is
41 imperfectly “soft” and does produce some degree of in-source
42 fragmentation. Furthermore, secondary adducts, multimers, and
43 fragmentation products of these can form during the ionization
44 process, resulting in multiple observed ions representative of a
45 single compound. These redundant signals are effectively
46 utilized for EI spectra to allow for spectral-matching-based
47 annotation metabolite signals.
48 Data analysis workflows that seek to detect mass signals in a
49 nontargeted manner utilize both mass and retention time-based
50 specificitythe resulting signal is commonly referred to as a

51“feature”. In the absence of co-elution, one feature originates
52from a single compound. However, the reciprocal is largely
53untrue: a single compound can give rise to multiple features, as
54described above. Therefore, many metabolomics data process-
55ing tools, including both commercial and open-source tools,
56attempt to group features into spectra. Some grouping
57strategies are based on chemically meaningful and predictable
58patterns reflecting known phenomenon. However, this
59approach can be compromised by (i) interfering signals from
60co-eluting metabolites in complex samples that happen to look
61like fragments, adducts, or isotopes and (ii) unpredictable mass
62spectral fragments, adducts, or isotopes. As such, an
63unsupervised approach to grouping features is an attractive
64alternative. Previous tools including CAMERA,2 AMDIS,3 and
65MSClust4 have attempted to address this issue, but none of
66these make full use of the nontargeted data. For example,
67CAMERA is biased toward the most abundant features and
68utilizes discrete binning by retention time. MSClust also looks
69for co-eluting and co-varying features and ultimately selects a
70representative “centrotype” feature for downstream statistical
71analysisthe majority of features are discarded. AMDIS works
72on a single data file, is generally not used for quantitation, and
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73 does not utilize high-mass-accuracy data. Furthermore, all of
74 these tools are designed for single-channel MS datasets.
75 Here, we report the development of a novel metabolomics
76 workflow constructed around indiscriminant MS/MS (idMS/
77 MS) data acquisition, which employs high-collision-energy
78 fragmentation without precursor ion selection,5 acquired
79 concurrently with low-collision-energy MS data. Our method
80 is based on the premise that two features resulting from the
81 same compound exhibit similarity in their retention times and a
82 high correlation in their abundance profiles across different
83 samples within a dataset. Based on this observation, we have
84 developed a simple similarity function between features that
85 allows us to use hierarchical clustering to generate the spectra
86 of chemical compounds by grouping features from a single
87 compound in a single cluster. Feature finding is conducted in
88 both low- and high-collision-energy data, and a custom feature
89 similarity score drives clustering of features into spectra suitable
90 for informed manual interpretation, as well as automated
91 database searching. This approach results in both in-source MS
92 and idMS/MS spectra for all detected features and enables
93 spectral matching to public, commercial, and custom spectral
94 databases without additional experimentation.

95 ■ EXPERIMENTAL SECTION
96 Sample Acquisition and Preparation. Equine cerebro-
97 spinal fluid (CSF) samples were obtained as previously
98 described.6 CSF was thawed at 4 °C, and 100 μL of CSF was
99 precipitated with 400 μL of cold methanol. This solution was
100 mixed thoroughly, incubated at −20 °C for 1 h, and spun at 12
101 000g for 15 min to remove proteins. The supernatant was
102 transferred to autosampler vials for UPLC-MS analysis. The
103 validation dataset consists of 50 urine samples, collected from
104 Swedish males. Samples were prepared by thawing the urine at
105 4 °C, diluting with equal parts water, and centrifuging to
106 remove particulates.
107 UPLC-MS Data Acquisition. Metabolome analysis of CSF
108 and urine samples were accomplished using a Waters Acquity
109 UPLC system coupled to a time-of-flight mass spectrometer
110 (Xevo G2 Q-TOF MS). Five microliters (5 μL) of either
111 protein-depleted CSF or diluted urine was injected onto an
112 HSS T3 column (Waters, 1 mm × 100 mm, 1.7 μM), and
113 eluted using a gradient of water to acetonitrile, each containing
114 0.1% formic acid. The gradient was held at 0.1% B for 1 min,
115 ramped to 95% B over 12 min, and held for 3 min, before
116 returning to 0.1% B and equilibrating for 3.9 min (20 min run
117 time). The flow rate was held constant at 200 μL/min. Eluent
118 was ionized via positive-mode electrospray ionization, with
119 capillary voltage set to 2.2 kV, cone to 30 V, extraction cone to
120 2, with a source temperature of 150 °C and the desolvation
121 nitrogen gas set to 350 °C at a flow rate of 800 L/h. Before
122 acquisition, the instrument was calibrated via an infusion of
123 sodium formate to within an error of 1 ppm. Mass accuracy was
124 ensured via infusion of leucine enkaphalin lockmass, collected
125 as a 0.5 s scan at a collision energy of 10 V every 20 s. Sample
126 data were acquired in MŜE mode, with alternating scans (0.2 s/
127 scan, m/z 50−1200) collected at collision energy of 6 V (MS)
128 or using a CE ramp from 15 V to 30 V (idMS/MS). Each

129sample was injected in duplicate, with each set of injections
130being completely randomized for acquisition order. In addition,
131the samples were analyzed using data-dependent acquisition
132mode for traditional MS/MS experiments, with one DDA MS/
133MS spectrum acquired per MS scan, with a minimum precursor
134intensity threshold of 200 counts per second. All data were
135acquired in centroid mode.
136Raw Data Conversion and Processing. Waters raw files
137were converted to cdf format using Databridge, which separates
138low-collision-energy MS and high-collision-energy idMS/MS
139data into two separate cdf files. The lockmass function data was
140discarded for this application. Feature detection (utilizing the
141centWave algorithm), an initial grouping step using a wide
142bandwidth (3), retention time correction, regrouping using a
143narrow bandwidth (1.5), and peak filling was performed using
144XCMS7 (v. 1.32.0) in R8 (v. 2.15). CAMERA2 (v. 1.16.0) was
145used a benchmark comparison, utilizing default values.
146RAMClust Approach. The RAMClust approach was
147developed in Matlab and is currently fully implemented in R
148in a package called RAMClustR, and it is currently available via
149github (https://github.com/cbroeckl/RAMClustR). Imple-
150mentation in R allowed an XCMS object to be used directly
151as input. The data within the XCMS object were extracted
152using the XCMS groupval function and was normalized to the
153total XCMS extracted ion signal (the quantile9 method is an
154available option in RAMclustR). When a second collision
155energy level is used (as is possible with Waters MŜE5 datasets
156utilized in this study), the user directs delineation of MS and
157idMSMS datasets using a tag located within the filename or
158filepath of the xcms object. RAMclustR is also capable of
159accepting properly formatted data matrices from other peak
160detection tools, with the only requirements being:

161(1) no more than one sample (or file) name column and one

162feature name row;

163(2) feature names that contain the mass and retention times,

164separated by a constant delimiter; and
165(3) features in columns and samples in rows.

166If both MS and idMS/MS data are to be imported, the feature
167names must be identical between the two datasets.
168RAMclust similarity was calculated for the full feature matrix
169(within a user-specified maximum-allowed retention time
170window). Metabomolics datasets can generate thousands to
171tens of thousands of features, which can tax the memory of
172many desktop computers. To manage memory, we utilize the ff
173package,10 which allows for rapid temporary storage of large R
174objects using physical disk space rather than in memory, and
175process large data matrices in square blocks (2000 features at a
176time by default). The RAMclust similarity scoring utilizes a
177Gaussian function, allowing flexibility in tuning correlational
178and retention time similarity decay rates independently, based
179on the dataset and the acquisition instrumentation. The
180correlational relationship between two features can be
181described by either MS-MS, MS-idMS/MS, or idMS/MS-
182idMS/MS values, and we use Pearson’s correlation to calculate
183similarity:
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185 where (cij
MS1/MS2)′ is the correlation coefficient between xi

MS1

186 and xj
MS2 (i and j represent the peak areas in each sample for

187 any two features), and σt and σr represent sigma values for the
188 retention time and correlational r value, respectively.
189 Similarities were then converted to dissimilarities (Dij = 1 −
190 Sij) for clustering. The output similarity matrix was then
191 clustered using average (for this study) or complete linkage
192 hierarchical clustering via that fastcluster package.11 The
193 dendrogram was then cut using the cutreeDynamicTree
194 function in the package, dynamicTreeCut.12 For this
195 application, the minimum module size is set to 2, dictating
196 that only clusters with two or more features are returned, as
197 singletons are impossible to interpret intelligently.
198 Cluster membership, in conjunction with the abundance
199 values from individual features in the input data, were used to
200 create spectra. Mass was derived from the feature mass, and the
201 abundance for each mass in the spectrum was derived from the
202 weighted mean of the intensity values for that feature. These
203 spectra were then exported as an msp formatted document,
204 which can be directly imported by NIST MSsearch, or used as
205 input for MassBank13 or NIST msPepSearch (http://peptide.
206 nist.gov/software/ms_pep_search_gui/MSPepSearch.html)
207 batch searching. Finally, the cluster membership was then used
208 to create a third dataset, SpecData, which represented the MS
209 level data after condensing feature intensities into spectral
210 intensities using a weighted mean function, where the more-
211 abundant signals contribute more to the spectral intensity.

212 ■ RESULTS AND DISCUSSION

213 We developed and tested our approach using a UPLC-MS
214 dataset of 38 samples of equine cerebrospinal fluid, and
215 subsequently validated the approach in an independent urine
216 dataset (see Figure 1 in the supplementary material). XCMS7

217 was used for feature finding, retention time correction, and
218 alignment, and the resulting dataset was subsequently
219 normalized to total XCMS signal intensity for each sample.
220 The output data was then divided into low-collision-energy
221 (MS) and high-collision-energy (idMS/MS) datasets, each with
222 dimensions of row number equal to the number of injections
223 and column number equal to the number of features (21060,
224 for the CSF dataset). Each cell of these datasets represents the
225 signal intensity at either low (MS) or high (idMS/MS) collision
226 energy. We developed a custom similarity matrix, which is the
227 product of two Gaussian terms: one that considers the
228 differences in retention times between two features and a
229 second that considers the correlation between two features
230 across all samples in the dataset. These two terms have widths
231 defined by σt and σr, respectively. This captures our intuition
232 that two features are similar if they are close in retention time
233 and are correlated: both are required for two features to be
234 grouped. Following the computation of the similarity matrix,
235 features are clustered using hierarchical clustering.
236 To generate discrete clusters from the resulting hierarchical
237 clustering dendrogram, we then used the DynamicTreeCut14

238 package in R. Cluster membership of each feature provides
239 qualitative spectral membership information, and the quantita-
240 tive data are taken from the MS and idMS/MS datasets;
241 abundance values are calculated as the averaged signal intensity
242 for each feature separately in both the low- and high-collision-
243 energy datasets. Thus, for each cluster, two spectra are re-
244 created, corresponding to the low-collision-energy in-source
245 spectra and the high-collision-energy counterparts.

246Any feature clustering tool must demonstrate accuracy to be
247useful in reducing redundancy without reducing biological
248coverage. One option to accomplish this is to compare the
249results of the clustering to a small panel of known compounds
250that are spiked into a sample. While this is a valid approach, it
251relies on the assumption that the chosen panel of compounds is
252representative of all the metabolites in a complex biological
253matrix. Thus, to increase the breadth of our validation
254experiments, we instead assessed the accuracy of the clustering
255by comparison against MS/MS spectra acquired using a
256traditional dependent acquisition (DDA) approach from the
257same CSF samples. All precursor ions that (i) could be mapped
258to a feature in the output dataset and (ii) contained more than
25910 product ions were used as “valid” spectra for comparison.
260These spectra represented known precursor-product ion
261relationships from many of the major signals in the dataset,
262even if the identity of the compounds was unknown. The
263spectra created by RAMClust were then compared to the DDA
264spectra and the dot product spectral similarity score was
265calculated as a measure of accuracy, as described previously.15

266While the complexity of in-source and indiscriminant MS/MS
267signals is expected to be higher than DDA MS/MS spectra for
268the same compound, more-accurate clustering will still be
269revealed as relatively higher dot-product similarity scores
270between the RAMclustR reconstructed spectra and the mapped
271DDA MS/MS spectrum.
272The RAMClust algorithm has several parameters that can be
273tuned by the user to improve clustering accuracy. Parameters σt
274and σr represent Gaussian tuning parameters of retention time
275similarity and correlational score, respectively, between feature
276pairs. The influence of these two parameters on the similarity is
277 f1depicted in Figure 1. These tuning parameters will allow the

278algorithm to be used with MS data from any chromatographic
279platform. When idMS/MS data are available, correlational
280similarity can be calculated between two features, at the level of
281either MS vs MS, MS vs idMS/MS, or idMS/MS vs idMS/MS.
282While the MS-idMSMS correlation theoretically represents the
283CID event most directly, this relationship is subject to potential
284interfering signals in both data channels (MS and idMS/MS).
285In practice, a strong correlational relationship at any of the
286three levels represents strong evidence of precursor−product

Figure 1. RAMClust is based on a custom feature similarity score,
which is the product of two terms that capture similarity in retention
time and correlation across samples. Each of the two terms has a
tuning parameter associated with it that controls the width of the
corresponding Gaussian: σt for retention time (left) and σr for the
degree of (right). Increased values for the two σ terms decrease the
rate of decay in the similarity score, as a function of either retention
time difference or correlation r between pair of features.
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287 relationships; thus, the algorithm utilized the maximum
288 correlational r-value of the three relationships.
289 The influence of σt and σr on the average spectral similarity
290 between RAMClust and DDA spectra was rigorously evaluated

f2 291 at 441 combinations of parameter levels of σt and σr (Figure
f2 292 2a). These results revealed a plateau of high spectral similarity

293 at values of σt =2 and σr = 0.5 (Figure 2a). This σt value was
294 approximately half the median peak width of the XCMS
295 detected peak (max-min time for each individual peak in the
296 xcms object), indicating that we can directly use XCMS input
297 to set this parameter without user intervention: this holds true
298 for an independent dataset of urine samples (see the
299 supplementary material). Correlation is a scale-free statistic,
300 and it should be platform-neutral; thus, we used our observed
301 optimal value of 0.5 and can expect reasonable performance on
302 any platform. Implementation of RAMclustR using parameters
303 that maximized MS/MS similarity between reconstructed
304 spectra and DDA spectra generated ∼2500 clusters with at
305 least two features (Figure 2b), and relatively few singletons
306 (Figure 2c). This algorithm generated a large stable region,
307 indicating that it is robust to small changes in parameter values.
308 This stability generated a strong MS/MS similarity, even at

309“unreasonable” σt values (>200 s), as long as σr is proportion-
310ally high (Figure 2a). We interpret this as a scaling
311phenomenon, as the dynamicTreeCut algorithm is responsive
312to tree “shape” rather than an absolute height.14 The
313dynamicTreeCut maximum height parameter was also exam-
314ined in conjunction with σt, and it revealed that the tree
315pruning step benefited from some precutting (Figure 2d); thus,
316we employ a default value of 0.3 for this parameter. These
317parametrization rules make the algorithm extremely easy to use:
318when an XCMS object is used as input, the user needs to set
319none of these parameters, and when a dataset is imported from
320other software, only σt needs to be manually set. The output
321MS/MS similarity using default RAMclust similarity scores was
322used to compare results against the only other feature grouping
323tool in R: CAMERA. The results of this comparison indicated
324that RAMclust grouping of features resulted in spectra that are
325more similar to DDA spectra than the results generated from
326CAMERA’s groupFWHM, groupCorr, and groupDen functions
327 t1(see Table 1). This observation was validated on a second LC-

328MS dataset of urine samples: RAMClust grouping resulted in
329clustering output that better represents valid feature relation-
330ships and, consequentially, biological small molecule signals.
331The spectra produced via RAMclust grouping can written to
332NIST MSP format for viewing and searching, and they can be
333submitted directly to the MassBank Database13 batch search
334tool, submitted for batch searching to NIST msPepSearch,
335and/or viewed and searched via the NIST MSSearch program.
336All these tools offer the ability to generate and search against
337custom libraries of spectra, and our laboratory is creating
338libraries of in-source spectra toward this end. However, idMS/
339MS spectra re-created from the RAMClust algorithm and
340workflow were highly similar to authentic NIST MS/MS
341 f3database spectra (see Figures 3a−c), demonstrating that this
342workflow can take full advantage of existing resources.
343Since RAMClust-generated spectra accurately reflect spectra
344of authentic chemical standards, the intensity of the spectra
345themselves can be used as the quantitative unit for downstream
346statistical analysis. The intensity of the spectra were calculated
347using a weighted mean function of all the component features,

Figure 2. Influence on RAMClustR parameters, σt for σt for and hmax
were systematically varied to examine the influence of these
parameters on feature grouping accuracy, the number of clusters,
and the number of ungrouped features (singletons). (A) RAMClust
spectra generated using σt and σr values of 2 and 0.5 produce the
strongest dot product similarity to DDA spectra, which represent
validated precursor product relationships. This σt value is roughly half
the median XCMS peak width, indicating that the σt value can be set
automatically when XCMS data are used as the input. (B) Influence of
σt and σr on the number of clusters with at least two features. The
optimal values σt and σr (denoted with an “x”), as determined by the
maximal dot product similarity, results in ∼2500 clusters. (C) σt and σr
values that are too selective results in fewer clusters, because of high
singleton (features which cluster with no other features). (D) The dot
product similarity scoring benefits from some precutting of the tree, as
provided by the dynamicTreeCut algorithm, allowing us to set a
default maximal cluster height of 0.3.

Table 1. Comparison between RAMclustR and CAMERAa

method MSMS similarityb nClus (>1)c perSingd

CSF Dataset
xsb ← groupFWHM(xset) 0.202 535 0.43
xsc ← groupCorr(xsb) 0.177 784 29.56
xsd ←groupDen(xsa) 0.043 39 0.00
RAMclustR(xset) 0.382 3248 15.47

Urine Dataset
xsb ← groupFWHM(xset) 0.106 290 4.88
xsc ← groupCorr(xsb) 0.059 332 61.77
xsd ←groupDen(xsa) 0.020 35 0.00
RAMclustR(xset) 0.228 827 32.75

aThe comparisons were performed using default values for both the
CSF and Urine datasets. The first three rows in both the CSF and
Urine datasets reflect CAMERA functions, while the final row reflects
RAMClustR-based grouping. bMSMSsimilarity refers to the spectral
similarity between mapped feature for which data-dependent MS/MS
data were available and the reconstructed spectra from the output
dataset defined in the “method” column. cnClus (>1) refers to the
number of clusters with two or more features defined by the grouping
method. dperSing is the percentage of all features in the data set that
remain ungrouped (singletons).
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348 such that each value in the resulting dataset represents the
349 quantitative signal intensity value for each spectrum for each

350sample in the dataset. The use of spectra dramatically reduced
351analytical variation through an averaging of measurement noise,
352as compared to either the mean or median feature-based
353variation for each cluster (see Figure 3D).

354■ CONCLUSIONS
355Annotation of mass signals in nontargeted metabolomics
356experiments remains a significant bottleneck and is arguably
357one of the most important challenges to the field as confident
358metabolite identification is required for biological interpreta-
359tion. In this report, we demonstrate a novel workflow utilizing
360indiscriminant MS/MS data acquisition, expanded feature
361finding and a novel clustering algorithm to group features
362based on both low- and high-collision-energy data to generate
363spectra that are compatible with publically available spectral
364search tools. The workflow allows for more-efficient use of
365instrumentation, reduced feature redundancy and false
366discovery rate correction burden for downstream univariate
367statistical tests, improved analytical reproducibility, a more-
368automated annotation workflow, and greatly increased
369confidence in the annotations, compared to accurate mass-
370based searching alone. RAMClustR is available for download at
371https://github.com/cbroeckl/RAMClustR.
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