

Abnormal Cardiac Beat Detection

By

HASAN ASHRAF

MUNIM REHMAN KAYANI

MUHAMMAD UMER QURESHI

DEPARTMENT OF ELECTRICAL ENGINEERING,

PAKISTAN INSTITUTE OF ENGINEERING AND APPLIED SCIENCES,

NILORE, ISLAMABAD 45650, PAKISTAN

JUNE 2015

ii

iii

Department of Electrical Engineering

Pakistan Institute of Engineering and Applied Sciences (PIEAS)

Nilore, Islamabad 45650, Pakistan

 Declaration of Originality

I hereby declare that the work contained in this thesis and the intellectual content of

this thesis are the product of my own research. This thesis has not been

previously published in any form nor does it contain any verbatim of the published

resources which could be treated as infringement of the international copyright law. I

also declare that I do understand the terms copyright and plagiarism, and that

in case of any copyright violation or plagiarism found in this work, I will be held fully

responsible of the consequences of any such violation.

Name Signature

Hasan Ashraf ____________________

Munim Rehman Kayani ____________________

Muhammad Umer Qureshi ____________________

Date: ________________

Place: ________________

iv

 Certificate of Approval

This is to certify that the work contained in this thesis entitled

“Abnormal Cardiac Beat Detection”

was carried out by

Hasan Ashraf

Munim Rehman Kayani

Muhammad Umer Qureshi

under my supervision and that in my opinion, it is fully adequate,

in scope and quality, for the degree of BS Electrical Engineering from

Pakistan Institute of Engineering and Applied Sciences (PIEAS).

Approved By:

Signature: ___________________________

Supervisor: Dr. Fayyaz ul Amir Afsar Minhas

Verified By:

Signature: _________________________

Head, Department of Electrical Engineering

 Stamp:

v

To our parents, siblings, teachers, and colleagues

We thank you all.

vi

Acknowledgements

Praise be to Almighty Allah who bestowed upon us the mental faculties to

contemplate the universe and gave us the strength and courage to aim for and achieve

our goals.

We are very grateful to our project supervisor Dr. Fayyaz ul Amir Afsar Minhas and

our co supervisor Mr. Muhammad Shahid Nazir for their guidance and help. We are

grateful to Mr. Muhammad Shahid Nazir for arranging lab facilities to work on this

project.We must also thank Dr. Waqas Ahmed and Dr. Muhammad Tufail, our

examiners, for their time and interest.

We would like to think Mr. Jamal Afzal and Mr. Shahzad Nadeem for providing us

with laboratory facilities. Special thanks go to our colleagues Ehab ul Haq (BSEE),

Ahmad Ali (BSEE), and Shafiq Ahmed (MSSE) for their technical assistance which

has proved vital in the completion of this project.

vii

Table of Contents

Declaration of Originality .. iii

Certificate of Approval ... iv

Acknowledgements ... vi

Table of Contents ... vii

Table of Figures ... x

Table of Tables .. xii

Abstract .. 1

1 Introduction .. 2

1.1 Objectives and Motivation of the project .. 2

1.2 System Architecture .. 2

1.2.1 Hardware Implementation ... 3

1.2.2 Software Implementation ... 3

1.3 Organization of the Report .. 4

2 The Human Heart ... 6

2.1 Electrical Conduction System of Heart ... 6

2.1.1 Action Potentials in the Heart .. 6

2.1.2 Initiation and Propagation Action Potentials in the Heart 7

2.2 Measurement of Electrical Activity in the Heart .. 8

2.3 ECG Systems... 8

2.3.1 The 12-Lead ECG System ... 8

2.3.2 Three Electrode ECG System: ... 11

2.4 ECG Waveform ... 11

2.4.1 P Wave ... 11

2.4.2 QRS Complex .. 12

2.4.3 T Wave ... 12

2.4.4 U Wave .. 12

viii

2.4.5 PR Interval ... 12

2.4.6 QT Interval ... 13

2.4.7 ST Segment .. 13

3 ECG Acquisition .. 14

3.1 Basic Concept .. 14

3.1.1 Electrodes ... 14

3.1.2 Electrode Types ... 15

3.1.3 Amplifier .. 15

3.1.4 Filtering .. 17

3.2 ECG Acquisition System .. 18

3.2.1 Instrumentation Amplifier ... 18

3.2.2 Right Leg Drive ... 19

3.2.3 Filtering .. 19

4 Interfacing .. 20

4.1 Interfacing using USB ... 20

4.1.1 Analog to Digital Converter (ADC) .. 20

4.1.2 Universal Serial Bus (USB) ... 21

4.1.3 USB Compatible Device .. 23

4.2 Interfacing using the Sound Card Input .. 27

4.1.4 Frequency Modulation ... 28

4.1.5 Voltage to Frequency Converter .. 28

4.1.6 V to F converter design .. 28

4.1.7 Interfacing with the sound card.. 31

4.1.8 Demodulation ... 32

4.2 Acquisition and interfacing circuitry... 33

5 Artifact Removal and QRS Complex Detection .. 34

5.1 Artifact Removal ... 34

ix

5.1.1 ECG Artifacts... 34

5.1.2 Artifact Removal Techniques .. 34

5.1.3 Implementation and Results ... 36

5.2 QRS detection ... 37

5.2.1 The Length Transform for QRS detection ... 37

5.2.2 Implementation and Results ... 38

5.3 R wave ... 43

5.3.1 R peak detection ... 43

5.3.2 RR interval ... 43

6 Support Vector Machine for Abnormal Beat Detection 45

6.1 Support Vector Machines .. 45

6.2 One-class SVM ... 48

6.3 Implementation.. 48

6.3.1 Feature Extraction .. 49

6.3.2 Training and Testing .. 49

6.3.3 Evaluation .. 49

7 Conclusions and Future Work ... 51

Appendix A .. 53

Appendix B .. 56

Appendix C .. 58

Appendix D .. 60

Appendix E .. 65

References .. 74

x

Table of Figures

Figure 1-1 Block diagram of hardware implementation .. 3

Figure 1-2 Block diagram of software implementation ... 4

Figure 2-1 Heart’s Conduction System [3] .. 6

Figure 2-2 Action Potentials in heart [4] ... 7

Figure 2-3 Limb lead placement [3] .. 10

Figure 2-4 Precordial lead placement [3]... 10

Figure 2-5 ECG waveform [3] ... 11

Figure 3-1 Block Diagram of ECG Acquisition Circuit .. 14

Figure 3-2 Polarizable Electrode ... 15

Figure 3-3 Non Polarizable Electrode .. 15

Figure 3-4 Three Operational Amplifier Differential Amplifier Topology [6] 16

Figure 3-5 Block Diagram of three Lead ECG system .. 18

Figure 3-6 AD620 Circuit [5] ... 19

Figure 3-7 Leg Drive ... 19

Figure 3-8 High pass and Low pass Filters .. 19

Figure 4-1 Block Diagram for USB interface .. 20

Figure 4-2 Flow chart... 23

Figure 4-3 Flow diagram for Main Method ... 24

Figure 4-4 Flow Diagram for the Save_File Method... 25

Figure 4-5 Flow Diagram for the Acquire_Data Method .. 25

Figure 4-6 Flow Diagram for the Stream Method .. 26

Figure 4-7 Flow Diagram for the Real_Time_Plot Method .. 26

Figure 4-8 Sound card frequency response .. 27

Figure 4-9 Block Diagram representation of proposed system 28

Figure 4-10 V to F converter circuit [13]... 29

Figure 4-11 Resistive divider ... 31

Figure 4-12 Complete circuit ... 33

Figure 5-1 ECG with baseline wander and power line interference 35

Figure 5-2 Chebyshev bandpass filter frequency response .. 36

Figure 5-3 Raw and forward backward bandpass filtered ECG 37

Figure 5-4 Length transform algorithm for QRS detection ... 37

Figure 5-5 Illustration of the approximation for length transform 38

file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997366
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997367
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997368
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997369
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997370
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997371
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997372
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997373
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997374
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997375
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997376
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997378
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997379
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997380
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997381
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997382
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997383
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997384
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997385
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997386
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997387
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997388
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997389
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997390
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997391
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997392
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997393
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997394
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997395
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997396
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997397

xi

Figure 5-6 The preprocessed ECG filtered by a 10-25 Hz band pass filter 39

Figure 5-7 First order difference of the band pass filtered signal 39

Figure 5-8 Difference squared ... 40

Figure 5-9 Threshold values .. 40

Figure 5-10 Thresholding and potential QRS complex region 41

Figure 5-11 Results of morphological opening and closing .. 42

Figure 5-12 QRS fiducial points .. 42

Figure 5-13 R peak approximation .. 43

Figure 5-14 Mean RR interval plot .. 44

Figure 6-1 Data set with two types of points: hollow and filled. 45

Figure 6-2 Support Vectors .. 46

Figure 6-3 Feature extraction ... 48

Figure 6-4 Training and testing errors ... 49

Figure A-1 ADCON0 Register .. 53

Figure A-2 ADCON1 register .. 54

Figure A-3 ADCON2 register .. 54

file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997398
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997399
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997400
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997401
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997402
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997403
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997404
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997405
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997406
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997407
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997408
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997409
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997410
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997411
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997412
file:///D:/University/8th%20Semester/Thesis/Thesis/FYP_report_complete%20final.docx%23_Toc422997413

xii

Table of Tables

Table 4-1 Design Specifications .. 29

Table 4-2 DC testing of VFC circuit.. 30

Table B-1 USB wires specification.. 56

1

Abstract

Cardiac diseases are the leading cause of death worldwide. Therefore there exists a

need for a system that can assist the cardiologist with electrocardiogram (ECG)

analysis. The project undertaken can be broken down into two separate segments. The

first part is concerned with the acquisition of ECG. The second part focuses on

analyzing the ECG to detect abnormalities in cardiac rhythms. The implementation of

the first part incorporates an ECG acquisition circuit. The acquisition circuit includes

an instrumentation amplifier, a filtering section, and an analog to digital converter and

can be interfaced using a universal serial bus (USB) to any computing device. The

major difficulty in ECG acquisition was line interference which required time and

effort to identify and minimize. The interface to a computing device must include an

Analog to Digital converter. The onboard ADC of a peripheral interface controller

(PIC) was used for analog to digital conversion while the USB interface of the PIC

provided an integrated solution to the interfacing problem.

An application program was written for ECG acquisition and analysis. This

application communicates with the acquisition hardware through the USB interface

and can be run on a PC or other device capable of USB communication. The acquired

ECG is polluted by a number of artifacts the removal of which was carried out

through forward backward IIR band pass filtering. The length transform algorithm

was implemented for detection of QRS fiducial points and R wave peak detection.

The system provides two main diagnostic utilities. First it generates a running average

plot of the RR intervals which shows heart rate variability. Secondly, it implements a

one-class support vector machine (SVM) for abnormal beat detection. We assume that

most of the beats in the record are normal and use randomly selected beats to train the

SVM. This approach has been shown to provide to Sensitivity (Se)/Specificity (Sp) of

87.6%/95.8%.

2

1 Introduction

Electrocardiogram (ECG or EKG) is a tool to measure electrical activity of the heart

and we can determine the cardiac condition from the electrical activity. An in-depth

analysis of ECG can indicate the type of disorder present in the heart. ECG analysis is

used for timely detection of dangerous heart diseases. ECG acquisition takes place in

a clinical setting and its examination is carried out by specially trained cardiac

experts. Manual extraction of abnormal beats in an ECG is a painstaking process,

especially in recordings of long durations. Automatic analysis of ECG is therefore of

some import in biomedical signal processing.

1.1 Objectives and Motivation of the project

The overall objective of this project is to develop a system which acquires and

analyzes an ECG signal. This system will detect basic abnormalities in cardiac rhythm

like Tachycardia and Bradycardia. This acquisition system includes an interface for

computing devices so as to be able to store and analyze the ECG signal.

 The motivation behind development of such a system is to help medical

experts in interpreting the ECG by providing a fast and reliable method of extraction

of abnormalities, thus saving precious time and effort of cardiac experts. These

features will help medical experts in monitoring large number of cardiac patients.

This system can also be used as a teaching aid for medical and paramedical trainees.

The system also incorporates features for remote acquisition and transmission of ECG

over the internet and can thus be used to monitor cardiac patients at remote locations.

The importance of this system can be understood by keeping in mind that

cardiovascular diseases are the leading cause of death globally [1]. In Pakistan,

cardiac diseases are responsible for about 34% of annual deaths [2]. The situation is

dire.

1.2 System Architecture

The architecture of the proposed system has the following major parts:

1) Hardware Implementation

2) Software Implementation

3

1.2.1 Hardware Implementation

The hardware implementation can be broken down as in Figure 1-1. A brief

discussion follows.

 ECG Acquisition

This concerns the acquisition of ECG signal from the body, keeping in mind the

various sources of noise (EMI, muscle movements etc.).

 Filtering

Filtering is done so as to remove unwanted noise and to increase signal to noise

ratio.

 Interfacing

This provides an interface to a computation device to store and analyze the ECG.

1.2.2 Software Implementation

Software implementation includes signal conditioning and analysis of ECG signal to

extract QRS start and end points and RR intervals. It also includes a machine learning

algorithm (one-class SVM) for abnormal beat detection. Figure 1-2 presents a block

diagram view of the software implementation.

Figure 1-1 Block diagram of hardware implementation

4

 Preprocessing

To remove baseline fluctuations and power line interference from the ECG.

 QRS detection and delineation

This concerns the detection of QRS fiducial points and R wave peak detection.

 Mean RR-interval plot

One of the two diagnostic utilities provided by the software system.

 One-class Support Vector Machine (SVM)

This includes feature extraction and training of SVM for abnormal beat

detection.

 Logging

This part includes data storage and report generation.

1.3 Organization of the Report

This report provides a detailed description of the project and the steps involved in

acquisition and interfacing of ECG signal with a computing device. Chapter 1

presents a description of the project. Chapter 2 provides basic material on the anatomy

and electrical network of the heart. Chapter 3 discusses the ECG acquisition system:

design and implementation. Chapter 4 describes the different methods used to

Figure 1-2 Block diagram of software implementation

5

interface ECG acquisition hardware with a computation device. Chapter 5 discusses

preprocessing of the ECG for noise removal and an algorithm for QRS complex

detection. It also includes a discussion of R wave peak detection and the generation of

mean RR interval plot. Chapter 6 delineates a method for using one-class SVM for

abnormal beat detection using training data from one class. Chapter 7 presents the

conclusions and discusses future work which could build upon the work contained in

this thesis.

6

2 The Human Heart

This chapter describes the structure and functional working of the heart. A brief

overview of the electrical activity in the heart is presented. It also provides a brief

introduction to the electrocardiogram. Cardiac abnormalities are usually reflected in

the ECG and an understanding of the electrical network of the heart can therefore be

beneficial.

2.1 Electrical Conduction System of Heart
Cardiac cells contract systematically and rhythmically. The contraction of heart is a

direct consequence of the contraction of all of the tiny cells of heart. These

contractions of the heart cells are triggered by electric impulses generated by the

Sinoatrial (SA) node within the heart as shown in Figure 2-1. The cells in the SA node

depolarize resulting in a pulse which travels throughout the heart and serves as a

stimulus for other cells of the heart. To understand the origin of these electrical

impulses, we should be familiar with the concept of action potentials in the heart.

2.1.1 Action Potentials in the Heart

We know that each cell is surrounded by a semi permeable membrane known as cell

membrane. The cell membrane allows ions to move in and out of the cell. Since ions

are charged particles, their movement establishes a potential gradient across the cell

membrane known as membrane potential. Due to this membrane potential every cell

Figure 2-1 Heart’s Conduction System [3]

7

in our body is slightly negative (at rest) inside than outside. The resting membrane

potential of a cell is approximately -0.1Volt [3].

Action potential is the tendency of cells to rapidly reverse their resting

membrane potential from negative value to slightly positive value which is usually

known as depolarization. The change in potential from this slightly positive value to

resting membrane potential is called repolarization. The cells which are capable of

reversing their resting membrane potentials are called excitable cells. Cardiac cells are

excitable cells. Action potentials occurring in the cardiac cells play a critical role in

systematic and rhythmic beating of the heart.

2.1.2 Initiation and Propagation Action Potentials in the Heart

The rhythm of the heart is initiated by the action potentials generated automatically by

the cells of sinoatrial (SA) node of the heart. The action potentials arising in the cells

of sinoatrial (SA) node propagate to and through atrioventricular (AV) node to Bundle

of His and Purkinje fibers. This propagation of action potentials through the heart

synchronizes the heart. As a result, all the cells contract at the same time which results

Figure 2-2 Action Potentials in heart [4]

8

in systematic and rhythmic beating of the heart. The initiation and transmission of

action potentials in the heart is shown in Figure 2-2.

2.2 Measurement of Electrical Activity in the Heart

The propagation of action potentials in the heart results in an electric pulse traveling

through the heart. The characteristics of this electric pulse can be measured by using

an electrocardiogram (ECG). The electrocardiogram is an indirect way of measuring

the electrical activity in the heart. A device for recording ECG was invented by

William Einthoven in 1901.

An electrocardiogram is obtained by measuring the potential difference between

different points on the body. A detailed analysis of the heart’s electrical activity can

be carried out by studying the ECG which also helps in the diagnosis of various

cardiac disorders.

2.3 ECG Systems

Electrodes placed on the skin, which are used to obtain an electrocardiogram, provide

a view of the heart’s electrical activity in the shape of a waveform. An ECG records

these waveforms from different perspectives called planes and leads.

A lead provides a view of the heart’s electrical activity between a positive and

a negative pole. The two poles define the lead’s axis. The term “axis” refers to the

direction of the current moving through the heart. The direction of the current affects

the direction of the ECG waveform. If the current is moving towards a positive pole,

it causes an upward deflection on the ECG and vice versa.

Plane refers to a cross-sectional view of electrical activity in the heart. For

example the frontal plane provides an anterior-to-posterior view of electrical activity.

2.3.1 The 12-Lead ECG System

The 12-lead ECG consists of 12 leads that are places on the limbs and chest. These 12

leads provide 12 different views of the heart’s electrical activity.

The six limb leads - I, II, III, augmented vector right (aVR), augmented vector

left (aVL), and augmented vector foot (aVF)- provide information about the heart’s

9

vertical plane. The augmented leads are unipolar while the other three limb leads are

bipolar.

The six chest, or precordial leads - V1, V2, V3, V4, V5, and V6 - provide

information about electrical activity in the heart’s horizontal plane. The precordial

leads are unipolar just like the augmented limb leads. These unipolar leads have

another indifferent electrode at the center of the heart.

2.3.1.1 Limb Leads

Figure 2-3 shows the placement of the limb leads where LL refers to the left leg. The

three bipolar limb leads form the basis of Einthoven’s Triangle. The augmented limb

leads are derived from the same three electrodes as in leads I, II, III. A brief

explanation follows:

 Lead I is bipolar with positive electrode on the left arm and negative electrode

on the right arm.

 Lead II is bipolar with positive electrode on the left leg and negative electrode

on the left arm.

 Lead III is bipolar with positive electrode on the left leg and negative

electrode on the right arm.

 Lead aVR has the positive electrode on the right arm. The negative electrode

is a combination of the left arm and leg electrodes.

 Lead aVL has the positive electrode on the left arm and the negative electrode

is a combination of the right arm and left leg electrodes.

 Lead aVF has the positive electrode on the left leg while the negative

electrode is a combination of the right arm and left leg electrodes.

Together these leads from the “hexaxial” reference system. The hexaxial reference

system is used to determine the heart’s electrical axis in the vertical plane. The term

electrical axis refers to the general direction of the heart’s depolarization wavefront

[3].

10

2.3.1.2 Precordial Leads

The precordial leads are placed in a sequence across the chest. They provide a view of

the heart’s horizontal plane. The six electrodes are considered positive and a negative

reference is calculated. Figure 2-4 shows the placement of the precordial leads.

Figure 2-3 Limb lead placement [3]

Figure 2-4 Precordial lead placement [3]

11

2.3.2 Three Electrode ECG System:

The system used for ECG acquisition in this project is similar to lead I of the limb

leads with an additional right leg drive. The right leg drive is used to remove

electromagnetic interference and provides a reference point for the ECG signal. Since

we are only using one of the leads, the ECG signal obtained will only provide

information about the heart’s electrical activity from perspective of lead I. The

acquisition system has been described in a later section.

2.4 ECG Waveform

 This section describes a typical ECG waveform and its various components. Figure

2-5 shows a typical ECG waveform. The baseline voltage of the ECG is known as the

isoelectric line. A discussion of the components follows.

2.4.1 P Wave

The P wave is the first component of the ECG waveform and represents atrial

depolarization. The P wave is usually seen upright in lead I (which we are using). If

the deflection of the P wave is normal and the P wave precedes the QRS complex, this

means that the electrical activity originated in the SA node. A normal P wave is 0.06

to 0.12 seconds in duration [3].The relationship between P waves and QRS complexes

allows us to distinguish between various cardiac arrhythmias.

Figure 2-5 ECG waveform [3]

12

2.4.2 QRS Complex

The QRS complex represents the depolarization of the ventricles and follows the P

wave. The depolarization of the ventricles causes them to contract and pump blood

through the arteries. The QRS complex looks “spiked” since the Bundle of His and

Purkinje fibers coordinate the depolarization of the ventricles leading to an increase in

conduction velocity. A normal QRS complex is 0.06 to 0.10 seconds in duration [3].

The Q wave is generally represented by the first negative deflection after the P

wave, the R wave is represented by the first positive deflection after the Q or P wave,

and the S wave is represented by the first negative deflection after the R wave. The

QRS usually appears upright in lead I. Every QRS complex may not contain a Q

wave, an R wave, and an S wave. A missing QRS complex may indicate AV block

while deep and wide Q waves may represent myocardial infarction.

2.4.3 T Wave

The T wave represents the repolarization of the ventricles. The T wave is usually

upright in lead I. The period from the beginning of QRS complex to the apex of the T

wave is known as the absolute refractory period. The last half of the T wave is called

the relative refractory period. During the relative refractory period the cells are

vulnerable to extra stimuli and a bump in the T wave may indicate that a P wave is

hidden in it. Tall or peaked T waves might indicate myocardial injury while inverted

T waves may represent myocardial ischemia [3].

2.4.4 U Wave

The U wave is not always visible on the ECG. It represents the repolarization of the

Purkinje fibers. A prominent U wave may be due to hypercalcemia or hypokalemia,

among other causes.

2.4.5 PR Interval

The PR interval represents the movement of the atrial impulse through the AV node,

Bundle of His and the right and left bundle branches.

Short PR intervals may indicate the impulse did not originate at the SA node.

Prolonged PR intervals may represent a conduction delay through the AV node due to

conduction tissue disease, ischemia, heart block etc.

13

2.4.6 QT Interval

The QT interval measures ventricular depolarization and repolarization and is around

0.40 seconds in duration [3]. The length of the QT interval varies according to the

heart rate. The faster the heart rate the shorter the QT interval.

2.4.7 ST Segment

The ST segment represents the end of ventricular depolarization and the start of the

ventricular repolarization. The ST segment starts at the J point, the junction between

the QRS complex and the ST segment, and ends at the start of the T wave. The ST

segment is typically 0.08 to 0.12 seconds long [3]. A depressed ST segment may

indicate myocardial ischemia. ST segment elevation may indicate myocardial

infarction.

14

3 ECG Acquisition
This chapter describes ECG acquisition: techniques to acquire an ECG and the

different parts of the acquisition circuit.

3.1 Basic Concept

ECG acquisition circuit can be divided into following parts as in Figure 3-1.

1) Electrodes

2) Instrumentation amplifier

3) Filtering to remove noise

3.1.1 Electrodes

An amplifier usually has high input impedance and ideally the input current is zero.

However a non-zero current flows from the bio potential electrode to input of the

amplifier. In human body current is carried out by ions. While in the wires connecting

the electrodes to the amplifier, the current is carried out by electrons. A transducer,

represented by ECG electrodes in the circuit, is used for the interface between the

body (ionic current) and the amplifier circuit (electronic current).

3.1.1.1 Electrode Groups

Ideally bio potential electrodes have two groups. In non-polarizable electrode current

flows freely across the electrode-electrolyte interface. These electrodes behave as

resistors as in Figure 3-2

Polarizable electrodes have no transfer of charge between electrode-electrolyte

interfaces. These electrodes behave as capacitors as shown in Figure 3-3 [4]. The

current that flows is displacement current. Practical electrodes have characteristics in-

between polarizable and non-polarizable electrodes as neither of the two can be

fabricated.

Figure 3-1 Block Diagram of ECG Acquisition Circuit

15

3.1.2 Electrode Types

There are three types of electrodes. A brief discussion of each follows.

Dry electrodes do not use gel to make conducting path between surface of skin

and electrode. Due to lack of electrolyte their characteristics resemble those of

polarizable electrodes.

Non-contact electrodes use remote sensing of bio potential. These are safe as

no current is drawn from the body. To extract bio potential signal from non-contact

electrode, the input impedance of the amplifier should be very high.

Wet electrodes use gel as electrolyte between skin and the electrode. Their

characteristics approach those of non-polarizable electrodes. The most commonly

used type is Ag/AgCl (silver-silver chloride) electrode. The gel is used to conduct

current between electrode and skin surface. In our project we used wet electrodes as

these electrodes are cheap and can be used with long connecting wires due to their

low impedance.

3.1.3 Amplifier

The basic purpose of a bio amplifier is to amplify an extremely weak signal. The

greatest challenge is to extract a weak bio potential signal (.5 mV-5 mV) [5]. For long

term power autonomy of circuit, power dissipation of amplifier has to be minimized.

Furthermore signal obtained by electrode is coupled with DC signal of up to 300mV

[5].

Figure 3-2 Polarizable Electrode
Figure 3-3 Non Polarizable Electrode

16

3.1.3.1 Instrumentation Amplifier

The wires connected to the electrodes are directly connected to the instrumentation

amplifier. A highly sensitive instrumentation amplifier is used, as ECG signal is in

millivolts. The instrumentation amplifier should amplify ECG signal while

attenuating common mode signals. Common mode rejection ratio (CMRR) defines

the ability of the instrumentation amplifier to reject voltages common to both inputs.

Only the differential input is amplified. The most popular topology of the

instrumentation amplifier is the three op-amp topology shown in Figure 3-4 [6].

Operational amplifier OA1 and OA2 provide infinite input impedance while

amplifying differential input. The common mode gain Ac and differential gain Ad are

given by equation 3.1 and 3.2.

𝐴𝑑 = (

1

2
+

𝑅2

𝑅1
) (

𝑅4,𝑡𝑜𝑝

𝑅3,𝑡𝑜𝑝
+

𝑅4,𝑡𝑜𝑝

𝑅3,𝑡𝑜𝑝
(

𝑅4.𝑏𝑜𝑡𝑡𝑜𝑚

𝑅3.𝑏𝑜𝑡𝑡𝑜𝑚 + 𝑅4.𝑏𝑜𝑡𝑡𝑜𝑚
)

+
𝑅4.𝑏𝑜𝑡𝑡𝑜𝑚

𝑅3.𝑏𝑜𝑡𝑡𝑜𝑚 + 𝑅4.𝑏𝑜𝑡𝑡𝑜𝑚
)

(3.1)

𝐴𝑐 = (1 +

𝑅4,𝑡𝑜𝑝

𝑅3,𝑡𝑜𝑝
) (

𝑅4.𝑏𝑜𝑡𝑡𝑜𝑚

𝑅3.𝑏𝑜𝑡𝑡𝑜𝑚 + 𝑅4.𝑏𝑜𝑡𝑡𝑜𝑚
) − (

𝑅4,𝑡𝑜𝑝

𝑅3,𝑡𝑜𝑝
)

(3.2)

Figure 3-4 Three Operational Amplifier Differential Amplifier

Topology [6]

17

While using discrete component implementation of the instrumentation

amplifier, optimal performance in term of high common mode rejection ratio

(CMRR), stability, and differential gain are difficult to compute. In discrete

component implementation it is important to have accurately matched resistors. The

slightest error in resistor R3,top R3,bottom, and R4,top, R4,bottom results in unwanted

common mode amplification.

The three op-amp topology of instrumentation amplifier is available as an

integrated circuit. Integrated instrumentation amplifiers, such as AD620, vastly

outperform their discrete component implementation. AD620 draws maximum of

1.3mA supply current [7]. An op-amp such as LF353 draws 6.5mA per chip [8].

AD620 was chosen since it is cheap and is available in the market. The gain of

AD620 is controlled by a single external resistor. The gain is given by equation 3.3.

𝐺𝑎𝑖𝑛 = 1 +

49.9𝑘𝛺

𝑅𝐺

(3.3)

3.1.4 Filtering

To talk about filtration we must first be acquainted with the common sources of noise

that can degrade the ECG.

3.1.4.1 Noise

There are many sources of noise that affect the ECG such as electromagnetic

interference (EMI), noise due to muscle movement, radio interference etc. We have

only worked on removing EMI since it is a major source of noise.

Electromagnetic interference causes a lot of problem in acquiring ECG.

Electromagnetic interference is caused by the magnetic field produced by current

carrying conductors. When this magnetic field cuts the loop made by human body,

electrode lead and amplifier, it produces electromagnetic interference. The power

component of line frequency is very high and it overpowers the ECG signal since the

ECG signal is a low frequency signals (0-150 Hz) [4] and its power is small. Line

interference can be minimized by decreasing the length of wires connecting the

electrodes and the amplifier, implementing a filter, using a Faraday cage etc.

18

3.1.4.2 Low Pass Filter

The output of instrumentation amplifier is band limited by a low pass filter. A Low

pass filter is required because the output of instrumentation amplifier still has a large

component of line frequency. Simple RC passive low pass filter was used for filtering

purpose.

3.2 ECG Acquisition System

The ECG acquisition system that was used has three electrodes. Two electrodes are

used to acquire the ECG signal (Right arm and Left arm). The third electrode provides

a reference for the ECG signal. The system can be divided in the following parts as

shown in Figure 3-5.

1. Instrumentation amplifier

2. Right leg drive

3. Filtering

Figure 3-5 Block Diagram of three Lead ECG system

3.2.1 Instrumentation Amplifier

The instrumentation amplifier used to amplify differential input was AD620. The

connection scheme used has been shown in Figure 3-6 [5]. The right leg drive was

connected between two 22kΩ resistors. These resistors were used so that the gain of

AD620 can easily be changed by changing RG. These resistors also provide a

constant gain to the right leg drive. This configuration changes the gain formula of

AD620 and now it is given by equation 3.4.

𝐺𝑎𝑖𝑛 = 1 +

49.9𝑘𝛺

𝑅𝐺
+

49.9𝑘𝛺

2 ∗ 22𝑘𝛺

(3.4)

19

The maximum gain of AD620 is 10,000 [7]. Ideally we would select the

maximum possible gain but the gain has to be selected keeping in mind that the output

does not saturate. Initially the gain was set to 10. After practical implementation the

gain was increased and the final gain of circuit was 100 i.e. RG=500Ω.

3.2.2 Right Leg Drive

The right leg drive injects an inverted version of the common mode signal into the

patient. This reduces the common mode signal at the inputs of AD620. The

operational amplifier used for this circuit was LF353. This circuit, shown in Figure 3-

7, act as a low pass filter with cut off frequency of 160 Hz (CLP=100nF, RLP=10kΩ).

3.2.3 Filtering

To band Limit the signal low pass and high pass filters were used. Low pass filter was

used to band limit the signal and to decrease the power component of 50 Hz

frequency. We used simple RC low pass filter with cut off frequency of 35 Hz as

shown in Figure 3-8. To provide high roll off, two low pass filters were connected in

series. High pass filter was used to remove DC offset present in ECG waveform. High

pass filter with cutoff frequency of 0.5 Hz was designed (R1 = 4.5 kΩ, R2 = 45kΩ,

R3 = 6.8 kΩ, C3 = 1 µF, C4 = 0.1 µF, C5 = 47 µF).

Figure 3-7 Leg Drive Figure 3-6 AD620 Circuit [5]

Figure 3-8 High pass and Low pass Filters

C3
1nF

R1

10k

R2

10k

R3
10k

C4
1nF

C5

1nF

20

4 Interfacing
The last part of a data acquisition is concerned with making the analog ECG signal

available to a computer for further processing. From the various options available to

us for interfacing like serial bus, parallel bus, universal serial bus (USB), sound card

of PC, etc., we decided to choose,

1) Universal serial bus (USB)

2) Sound card of the PC

The original aim was to use USB but as an alternative, sound card of PC was also

used as a contingency plan. This was needed since the implementation of a USB

interface is a difficult task while interfacing with the sound card is relatively easier.

4.1 Interfacing using USB

The overall scheme of interfacing using USB is shown below in Figure 4-1.

The analog ECG signal is converted into digital (binary) form using 10-bit

analog to digital converter (ADC) of the microcontroller PIC18F4550. The

microcontroller also has a USB module in it, which is used to transmit the output of

analog to digital converter (ADC) to a USB compatible device like PC for further

processing and analysis.

4.1.1 Analog to Digital Converter (ADC)

Analog to digital converter (ADC) is a device that is used convert an input analog

signal into a set of digital (binary) values. We used the onboard ADC of PIC18F4550

for analog to digital conversion. PIC18F4550 has a 10-bit ADC which means that the

voltage level of any input signal will be divided into 210 = 1024 steps.

Figure 4-1 Block Diagram for USB interface

21

The reference voltage together with the resolution of analog to digital

converter (ADC) dictates the step size. PIC18F4550 provides us with the flexibility to

set the step size by providing provision for both positive and negative reference

voltages. Since the amplitude of ECG signal was limited to ±1Volts peak, we used

+1Volt for positive reference and -1Volt for negative reference. Hence the step size in

our case came out to be 1.95 mV as given in equation 4.1.

𝑆𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 =

𝑉𝑟𝑒𝑓(+) − 𝑉𝑟𝑒𝑓(−)

2𝑛
=

1 − (−1)

210
= 1.953125𝑚𝑉

(4.1)

Acquisition time, is the time taken by the charge holding capacitor to fully

charge to the input channel voltage level. For PIC18F4550 analog to digital converter

acquisition time was calculated to be,

𝐴𝑐𝑞. 𝑡𝑖𝑚𝑒 = (0.2 + 0.572)µ𝑠 = 0.772µ𝑠

We have considered the temperature to be less than 25°C, therefore Tcoff=0µ𝑠

as described in the datasheet [9]. For details on configuration of the ADC, refer to

Appendix A.

4.1.2 Universal Serial Bus (USB)

 The microcontroller PIC18F4550 has a built in USB serial interface engine (SIE) that

supports full (12Mbps) and low (1.5Mbps) speed communication between any USB

host and microcontroller. The SIE can be interfaced directly to the USB using the

internal transceiver of the microcontroller. The power to the internal transceiver can

be provided by enabling the 3.3V internal regulator and full or low speed mode for

communication with the host can be selected [9].

The speed of the device on the bus is set by connecting a 1.5kΩ ± 20%

resistor between 3.3Volts line (VUSB) and either of the two data lines (D+ or D-) at the

device end. For a full speed bus the resistor is connected to D+ line while for a low

speed bus the resistor is connected to D- line. In PIC18F4550 internal pull up resistors

can be used to set the device in full speed mode on the bus.

22

4.1.2.1 USB bus communication

There are four ways for the transmission of data on the universal serial bus [10].

1) Isochronous

2) Bulk

3) Interrupt

4) Control

We used interrupt mode of transfer for the transmission of ECG data to the PC

because it ensures data integrity timeliness of delivery.

4.1.2.2 Implementation of USB interface using PIC18F4550

From the data sheet of PIC18F4550 we can see that PORTC pins RC4 (pin23) and

RC5 (pin 24) are used for USB interface. RC4 is USB data D- pin and RC5 is USB

data D+ pin. Internal pull up resistors were used to configure the device in full speed

mode (12Mbps). The overall operation of the USB module of microcontroller is

controlled by three control registers and a total of twenty two registers to manage the

actual USB transactions. Instead of configuring these registers we used MikroC

library functions to implement USB transactions.

When a USB device is plugged into the bus, the process of enumeration

begins. In MikroC IDE we added a descriptor file which takes care of the process of

enumeration. This file was created using HID terminal of the MikroC IDE.

Configuration bits for the microcontroller were set by editing the project settings in

MikroC IDE.

The working of the code written in C to convert the analog ECG signal to

digital form and transmit the output of analog to digital converter (ADC) to a PC

using USB can be understood from the flow chart shown in the Figure 4-2. The code

for conversion is present in Appendix C.

23

4.1.3 USB Compatible Device

A routine in Python was written to acquire the digital ECG data, on computer, sent by

the microcontroller. The overall operation of the program can be understood from the

Figure 4-3,

Figure 4-2 Flow chart

24

The method “Connect_USB” establishes the connection between the

microcontroller and the computer. After the connection is established, two processes

are initiated which run in parallel. Process1 (Acquire_Data) takes the ECG data,

output by the ADC of microcontroller, and puts it in the queue. Process2 takes the

data from the queue and can either save it to a file, stream it to another device or plot

it in real time.

The working of the methods “Acquire_Data”, “Save_File”, “Stream” and

“Real_Time_Plot” can be understood from the flow diagrams given in Figure 4-4,

Figure 4-3 Flow diagram for Main Method

25

The method Acquire_Data signals microcontroller to start sending data. The

data sent by microcontroller is received and converted into voltages. This data is then

sent to the queue. This process is executed in a cycle. A file is opened in writeable

mode. Data is read from the Queue and converted into strings. These strings are then

written to the file. The process is shown in Figure 4-5.

To stream data a socket must be created on both server and the client. The

server socket binds to its own IP address while the client socket connects to the server

IP address. A port common to both server and client is used for communication of

data. If the connection is established then communication process between server and

client starts. Flow diagram is shown in Figure 4-6.

Figure 4-5 Flow Diagram for the

Acquire_Data Method

Figure 4-4 Flow Diagram for the

Save_File Method

26

 The Real_Time_Plot first creates an empty figure. The data is then read from

queue and put in a list. The list is then updated so that only new data is plotted. This

updated list is then plotted.The code for the complete routine and subroutines along

Figure 4-7 Flow Diagram for the

Real_Time_Plot Method

Figure 4-6 Flow Diagram for the Stream Method

27

with their documentation is given in Appendix D.

4.2 Interfacing using the Sound Card Input

As discussed in the beginning of the chapter, the sound card interface was developed

as a contingency plan. The microphone input to a PC, laptop or a smartphone is a

ready-made system for data-acquisition since it uses a built-in ADC to sample the

input signal. However, the microphone input suffers from at least two problems:

1) The input is capacitively coupled.

2) The sound card is usually designed to work for a band of frequencies between

20 Hz to 20 kHz.

The major component of an ECG signal lies between 0.5 – 50 Hz [11] . Figure 4-

8 shows the input frequency response of a PC sound card to a sine sweep (20 Hz -20

kHz). It can be seen that the roll off starts above 20 Hz in this particular case.

 Most computing devices today have a sound card with a microphone input

with at least an 8 bit (usually higher) ADC. However, in order to make use of the

sound card for interfacing, the ECG band needs to be shifted to higher frequencies

due to the aforementioned problems. This can be readily achieved through Frequency

modulation of the ECG signal. Figure 4-9 shows a conceptual diagram of the

proposed system

Figure 4-8 Sound card frequency response

28

.

4.1.4 Frequency Modulation

Frequency modulation allows us to encode the low frequency ECG signal using a

high frequency carrier. The frequency of the carrier changes in relation to the

amplitude of the ECG signal. A frequency modulated wave can be described by

equation 4.2 [12].

𝜑𝐹𝑀(𝑡) = 𝐴 cos(𝜔𝑐𝑡 + 𝑘𝑓 ∫ 𝑚(𝛼) 𝑑𝛼

𝑡

−∞

(4.2)

In equation 4.2, 𝜔𝑐 represents the carrier frequency while 𝑘𝑓 is known as the

sensitivity. Since FM represents the signal to be transmitted in the variation of the

frequency and not the amplitude of the carrier, we can read this frequency modulated

signal from the microphone input of the circuit using a software routine. We can also

read this signal at the microphone input using MATLAB.

4.1.5 Voltage to Frequency Converter

Voltage to frequency converters, basically VCOs, are available as integrated circuits

and can be used for linear frequency modulation. Another option is to implement a

voltage controlled oscillator through various circuit topologies using discrete

components. A V to F converter, however, allows the implementation of the

modulation scheme using a single IC.

4.1.6 V to F converter design

Texas instruments LM 331 voltage to frequency converter was selected for frequency

modulation since it meets the specifications and is available in the market. Since our

Figure 4-9 Block Diagram representation of proposed system

29

signal can take on both positive and negative voltages, we need a bipolar V to F

converter. LM 331 by itself does not allow us to cater to both positive and negative

voltage. To this end, the circuit of Figure 4-5 was designed to meet the specifications

in Table 4-1. LM331 provides a reference voltage of 1.90V at pin 2. In Figure 4-8 this

reference voltage has been used to allow bipolar voltage to frequency conversion.

4.1.6.1 Specifications

Table 4-1 Design Specifications

Input voltage range (Vp) +/- 1V

Sensitivity of VFC 2000 (Δf = 2 kHz for ΔVin = 1V)

Fo (center frequency) 4 kHz

Supply Voltage 9 V (battery)

4.1.6.2 Circuit Diagram:

4.1.6.3 Design:

The design equations are given below [13]. The circuit of Figure 4-10 was designed

using these equations to meet the specifications above.

𝐹 = 𝑉7 ∗

𝑅4

𝑁

(4.3)

 Where V7 refers to the voltage at pin 7 and N is given by Eq. 4.4.

Figure 4-10 V to F converter circuit [13]

30

 𝑁 = 2.09 ∗ 𝑅3 ∗ 𝑅2 ∗ 𝐶2 (4.4)

𝑅7 = (𝐹𝑝 − 𝐹𝑜) ∗ 1.9 ∗

𝑅1

𝐹𝑜 ∗ 𝑉𝑝

(4.5)

𝑅4 = 𝑁 ∗ 𝐹𝑜 ∗

2 ∗ 𝑅7 + 𝑅1

1.9 ∗ 𝑅1

(4.6)

 In Eq. 4.5, Fp refers to the peak frequency of the VFC, Fo refers to center

frequency of VFC (Vin = 0V) and Vp is the peak input voltage. For our purposes we

chose Fo to be 4 kHz and Fp to be 6 kHz which gives a peak negative frequency, Fn,

of 2 kHz.

With these design parameters, we only need to change two resistors, R7 and

R4, to change our input voltage and output frequency range. The output available at

pin 3 is a stream of rectangular high-to-low pulses. For more details see [13].

Making use of Eqs.4.5 and 4.6, with the given design specifications, we

obtained the following values.

R4 calc = 86.7 k R4 used = 82 k

R7 calc = 95 k R7 used = 100k

Since the actual values used were different, a slightly different center frequency of 3.8

kHz was achieved.

4.1.6.4 Testing

The circuit was initially tested by applying DC voltages at pin 7 and observing the

output. Table 2 enumerates the results.

Table 4-2 DC testing of VFC circuit

Input (mV) Frequency (kHz) Input (mV) Frequency (kHz)

0 3.85 0 3.85

200 4.2 -200 3.4

400 4.6 -400 3

600 5 -600 2.6

800 5.4 -800 2.2

1000 5.8 -1000 1.8

31

The circuit was then tested by applying time varying voltages of various sorts and

observing the output at pin 3.

4.1.7 Interfacing with the sound card

The output at pin 3 is a stream of rectangular pulses of varying widths depending on

the input voltage. This output can drive a TTL (logic level: 5V) load [14]. The

microphone input of a typical sound card cannot handle such voltages. In order to use

the microphone input, we need to scale our FM signal down to a safe level. This was

achieved by using a voltage divider (resistive network), and buffering the output in

order to isolate the circuit from the microphone input as in Figure 4-8. The output of

this circuit can then be safely applied to the line-in of a sound card using a suitable

connecter (3.5mm jack usually).

The input is to be applied across R2 while the output can be obtained between

the nodes labeled output and virtual ground. U1B implements a virtual ground which

is used for the reason that LF353 does not work well with a single supply with input

voltages close to the supply voltages. Since LF353 comes with two op-amps on a

single chip and is readily available, this topology makes sense. U1A implements a

voltage follower. The attenuation can be controlled through the potentiometer R2. The

ratio actually used was 10: 1 (5V to 0.5V).

U1A

LF353N

3

2

4

8

1

R1
10kΩ

R2

100MΩ

Key=A
0%

U1B

LF353N

5

6

4

8

7

V1
9 V

R3
10kΩ

output

Virtual_ground

input

Figure 4-11 Resistive divider

32

4.1.8 Demodulation

The FM signal can be read from the microphone input through MATLAB. MATLAB

also provides a built in function to demodulate FM signals. The MATLAB script

written for demodulation has been reproduced below.

%Set sampling frequency
Fs=44000;
%Create audiorecorder object
y=audiorecorder(Fs,16,1,-1);
%Read into the audiorecorder object from mic-in for 0.5 sec
recordblocking(y,0.5);
%Obtain samples from audiorecorder object
z=getaudiodata(y);
%Plot the signal read at the mic-in
plot(z)
%Demodulate FM with center freq. 3.8 kHz and sensitivity 2000
h=demod(z,3830,Fs,'fm',2000);
%Open new figure window
figure(2)
%Plot demodulated signal in a separate window
plot(h)

The demodulated output obtained using this code contained a considerable

amount of noise. However, before we could improve the modulating circuitry our

USB interface had been implemented and tested to work properly. Work on the sound

card interface was thus abandoned.

33

4.2 Acquisition and interfacing circuitry

Figure 4-12 shows the complete acquisition and interfacing circuit developed during

the course of this project.

p
o
s

3 2

6

47

8

5

1

U
1

A
D

6
2
0

R
5

2
2
k

R
6

2
2
k

R
7

5
0
0

32

1

84

U
2

:A

L
F

3
5
3R

8

1
0
k

R
9

1
M

C
6

.1
U

F

1 2 3

J
1

S
IL

-1
0

0
-0

3

5 6

7

8 4

U
2

:B

L
F

3
5
3

R
1
0

1
0
k

R
11

1
0
k

1 2

J
2

S
IL

-1
0

0
-0

2

R
1
2

4
k
6

R
1
3

4
6
k

C
7

1
u

F

C
8

.1
u
F

1 2 3

J
3

S
IL

-1
0

0
-0

3

R
A

0
/A

N
0

2

R
A

1
/A

N
1

3

R
A

2
/A

N
2
/V

R
E

F
-/

C
V

R
E

F
4

R
A

3
/A

N
3
/V

R
E

F
+

5

R
A

4
/T

0
C

K
I/
C

1
O

U
T

/R
C

V
6

R
A

5
/A

N
4
/S

S
/L

V
D

IN
/C

2
O

U
T

7

R
A

6
/O

S
C

2
/C

L
K

O
1
4

O
S

C
1
/C

L
K

I
1
3

R
B

0
/A

N
1
2

/I
N

T
0

/F
L
T

0
/S

D
I/
S

D
A

3
3

R
B

1
/A

N
1
0

/I
N

T
1

/S
C

K
/S

C
L

3
4

R
B

2
/A

N
8
/I
N

T
2

/V
M

O
3
5

R
B

3
/A

N
9
/C

C
P

2
/V

P
O

3
6

R
B

4
/A

N
1
1

/K
B

I0
/C

S
S

P
P

3
7

R
B

5
/K

B
I1

/P
G

M
3
8

R
B

6
/K

B
I2

/P
G

C
3
9

R
B

7
/K

B
I3

/P
G

D
4
0

R
C

0
/T

1
O

S
O

/T
1

C
K

I
1
5

R
C

1
/T

1
O

S
I/
C

C
P

2
/U

O
E

1
6

R
C

2
/C

C
P

1
/P

1
A

1
7

V
U

S
B

1
8

R
C

4
/D

-/
V

M
2
3

R
C

5
/D

+
/V

P
2
4

R
C

6
/T

X
/C

K
2
5

R
C

7
/R

X
/D

T
/S

D
O

2
6

R
D

0
/S

P
P

0
1
9

R
D

1
/S

P
P

1
2
0

R
D

2
/S

P
P

2
2
1

R
D

3
/S

P
P

3
2
2

R
D

4
/S

P
P

4
2
7

R
D

5
/S

P
P

5
/P

1
B

2
8

R
D

6
/S

P
P

6
/P

1
C

2
9

R
D

7
/S

P
P

7
/P

1
D

3
0

R
E

0
/A

N
5
/C

K
1
S

P
P

8

R
E

1
/A

N
6
/C

K
2
S

P
P

9

R
E

2
/A

N
7
/O

E
S

P
P

1
0

R
E

3
/M

C
L
R

/V
P

P
1

U
3

P
IC

1
8

F
4

5
5
0

W
D

T
_

P
E

R
IO

D
=

1
8
m

C
9

1
0

0
n
F

C
1
0

1
0

0
n
F

V
C

C
1

D
+

3

D
-

2

G
N

D
4

J
4

A
U

-Y
1

0
0

5
-R

X
1

C
R

Y
S

T
A

L

C
11

2
2

p
F

C
1
2

2
2

p
F

C
1
3

4
7

0
u
F

R
1
9

4
K

7
123456

J
5

C
O

N
N

-H
6

3 2

6

7 4

1

5

U
4

7
4
1

R
1
5

6
.8

K

R
1
6

6
.8

K

R
1
7

6
.8

K

R
1
8

6
.8

K

R
V

1

1
0
K

C
1
4

1
0

u
F

R
1
4

1
6
K

R
V

2

1
0
K

R
V

3

1
0
K

R
0

1
0
k

R
0
1

1
0
k

C
1

1
n

F

C
2

1
n

F

R
0
2

1
0
k

R
0
3

1
0
k

Figure 4-12 Complete circuit

34

5 Artifact Removal and QRS Complex

Detection
This chapter presents an overview of artifacts which usually distort an ECG signal

and the techniques that were implemented for the removal of these artifacts along

with an algorithm for QRS complex detection. These artifacts lower the accuracy of a

diagnosis based on such an ECG and therefore their removal is imperative to ensure a

reliable diagnosis. Section-1 deals with the artifacts normally present in an ECG and

the techniques that were used for their removal. Section-2 presents an algorithm for

QRS detection. Section discusses a method to detect R wave peak. The python code

for these analyses can be found in Appendix E.

5.1 Artifact Removal

This section presents the artifacts that distort the ECG and the techniques used for

their removal. For QRS complex detection, the ECG has to be preprocessed in order

to remove these artifacts.

5.1.1 ECG Artifacts

The ECG signal is usually corrupted by the following types of artifacts [15] :

1. Power line interference: This presents itself as a 50/60 Hz noise in the ECG.

The noise frequency drifts with the change in the power line frequency.

2. Baseline Drift: Baseline drift can usually be attributed to relative motion

between the electrode contact surface and the skin and presents itself as a 0.15

– 0.3 Hz signal [16].

3. Quantization noise and aliasing introduced due to digitization of the ECG.

Figure 5-1 shows an ECG signal acquired using our own ECG acquisition system.

Baseline drift and noise distorting the ECG is clearly visible. In order to use this ECG

for diagnosis we need to remove these artifacts to get a cleaner signal.

5.1.2 Artifact Removal Techniques

This section discusses the techniques implemented for baseline wander and power

line interference removal.

35

5.1.2.1 Baseline wandering

Baseline wandering can be thought of as a shift in the DC value of the signal and can

usually be attributed to relative motion between the electrode contact surface and the

skin. Baseline wander has a frequency range 0.05 – 1 Hz [16]. Baseline wander can

cause problems in QRS detection and its removal is therefore necessary.

Baseline wander removal techniques can be broadly classified in two

categories: polynomial based and filtering based techniques. While polynomial based

techniques are more robust, filtering based techniques are easier to implement. A

simple high pass filter of cutoff frequency around 0.5 Hz can be used for baseline

removal. The high pass filter should have linear phase filter in order to avoid

distortion of the ECG.

Linear phase filtering can be achieved by using a finite impulse response (FIR)

filter. However FIR filters designed for this purpose are of very high order (700 Hz –

2000 Hz) and cannot be implemented on small datasets due to the delay introduced by

FIR filtering. To deal with this problem, infinite impulse response (IIR) forward-

backward filtering can be used since an IIR filter with a similar frequency response to

an FIR filter usually has a smaller order. Furthermore forward-backward filtering with

an IIR filter is equivalent to forward filtering with a filter of squared magnitude and

zero phase response [17].

Figure 5-1 ECG with baseline wander and power line interference

36

5.1.2.2 Power line Interference removal

Power line interference generally presents itself as a 50 or 60 Hz signal added on to

the ECG signal. A common method to remove power line interference is to use a

digital notch filter to remove frequency components around the power line frequency.

However, this does not take into account the drift in the power line frequency and

again requires a filter of a very high order due to the small transition band.

Since our main goal is the detection of QRS start and end points we do not

need to preserve the entire ECG spectrum. An ECG signal with frequency

components in the range 0.5 -45 Hz is adequate for QRS detection [18].Therefore we

can use a low pass digital filter to limit the band of frequency range of the ECG signal

below 50 Hz. While this will distort the ECG, the resulting signal would work for our

purposes.

5.1.3 Implementation and Results

Since baseline wander removal can be achieved using a 0.5 Hz high pass filter while

power line interference can be reduced through a 45 Hz low pass filter, a Chebyshev

band pass filter of 0.5 – 45 Hz was used for forward backward filtering of the ECG.

Figure 5-2 shows the frequency response of the Chebyshev filter designed for this

purpose. The order of this bandpass filter is 7 and through forward backward filtering

the computational complexity which would have been a problem for say a 500 order

FIR filter has been reduced.

Figure 5-2 Chebyshev bandpass filter frequency response

37

Figure 5-3 compares a raw and bandpass filtered ECG.

5.2 QRS detection

As detailed before, the QRS complex represents the depolarization of the ventricles.

The detection of the QRS complex is of prime importance in ECG analysis since a

fair number of subsequent processing steps are based on this.

5.2.1 The Length Transform for QRS detection

We implemented a length transform based algorithm for QRS detection. The

algorithm is similar to the popular Pan-Tompkins algorithm. Figure 5-4 presents a

block diagram view of the steps involved in QRS complex detection using the length

transform algorithm.

Figure 5-3 Raw and forward backward bandpass filtered ECG

Figure 5-4 Length transform algorithm for QRS detection

38

The algorithm relies on the fact that if we view the ECG signal as being made

up of a string, the QRS complexes would consume most of the length of the string i.e.

the curve length corresponding to the QRS complex is longer than that of other parts

of the ECG. More formally, the curve length corresponding to the QRS complex can

be written as in Eq. 4.1. Here Tx represents the sampling interval and yi represents the

amplitude of the i-th ECG sample while n is the length of the QRS complex in terms

of the samples [19].

𝐿 = ∑ 𝑙𝑖

𝑛

𝑖=1

 ∑ √𝑇𝑥
2 + (𝑦𝑖 − 𝑦𝑖−1)2

𝑛

𝑖=1

Eq.

4.1

Eq. 4.1 reduces to Eq. 4.2 if we approximate the length of each hypotenuse (𝑙𝑖)of the

triangle with the height. Figure 5-5 illustrates this concept.

 𝐿 = ∑ 𝐷𝑦
𝑛
𝑖=1 Eq.

4.2

Since 𝐷𝑦 can be negative we will use 𝐷𝑦
2 for the purpose of analysis. Note that

𝐷𝑦 is simply the first order difference of the signal. Since the curve length for QRS

complex is generally greater than for any other part of the ECG, this approximation

would allow us to identify the QRS complex simply by taking the first order

difference of the signal.

5.2.2 Implementation and Results

The implementation of the length transform algorithm for QRS detection follows in

the order specified in Figure 5-4.

𝑦𝑖−1

𝐷𝑦

𝑇𝑥

𝑦𝑖

Figure 5-5 Illustration of the approximation for length transform

39

5.2.2.1 Band Pass filtering

The frequency content of the QRS complex lies between 10-25 Hz [18].A band pass

filter designed for this frequency range would remove the low frequency noise

attributed to movement or baseline shifts and the high frequency noise, including

power line interference, from the ECG. An FIR filter was used for this purpose.

Figure 5-6 presents the ECG signal filtered by a band pass (10-25 Hz) filter.

5.2.2.2 Differentiation

As discussed before, the curve length of the ECG signal can be approximated by first

order difference of the signal. Figure 5-7 compares the band pass filtered and the

difference signal. It can be seen that the first order difference has large values for the

samples corresponding to the QRS complexes.

Figure 5-6 The preprocessed ECG filtered by a 10-25 Hz band pass filter

Figure 5-7 First order difference of the band pass filtered signal

40

5.2.2.3 Squaring

The differenced signal is then squared. Figure 5-8 shows the results.

5.2.2.4 Thresholding

In order to detect the QRS complex, a threshold is defined by averaging the difference

squared signal over a window of duration four seconds. A noise factor multiplier is

provided to account for the amount of noise in the signal. The samples of the

Figure 5-8 Difference squared

Figure 5-9 Threshold values

41

difference squared signal greater than the threshold value are marked as potential

QRS complexes. Figure 5-8 shows the threshold plotted with the difference squared

signal.

Figure 5-10 illustrates the potential QRS complex region obtained through this

process. The figure shows the difference squared values obtained for a single QRS

complex. In order to detect the actual QRS complex post processing is required to

remove the errors (regions erroneously marked as QRS complex) and to detect QRS

start and end points since the QRS can be divided into multiple regions as in Figure 5-

10.

5.2.2.5 Morphological post processing

To remove errors and detect QRS start and end points we use morphological opening

and closing. Morphological opening is used to remove small spikes in the identified

potential QRS complex regions which usually appear due to noise while

morphological closing is used to join together potential QRS complex regions if they

are close enough. To perform morphological opening, a ones array corresponding to

0.12*fs duration (normal QRS length) was used as the structuring element. For

morphological closing a ones array corresponding to 0.04*fs duration (minimum QRS

length) was used as the structuring element. Figure 5-11 illustrates the result of

Figure 5-10 Thresholding and potential QRS complex region

42

morphological opening and closing. It can be seen that an isolated spike marked as a

potential QRS complex region has been removed (morphological opening) while the

spikes which were adjacent have been marked as QRS complex regions

(morphological closing).

5.2.2.6 Detection of QRS fiducial points

Since the regions comprising the QRS complexes are now well defined, a simple

difference operation can now be used to find the QRS start and end or fiducial points.

Figure 5-12 depicts the results.

Figure 5-11 Results of morphological opening and closing

Figure 5-12 QRS fiducial points

43

5.2.2.7 Results

This algorithm is good at detection of the QRS complex but the fiducial points

identified by this algorithm need to be further refined to increase the accuracy.

5.3 R wave

This section presents a simple method to detect the R peak. Furthermore we present a

plot of the running average of the RR-intervals.

5.3.1 R peak detection

Since the QRS start and end points have been marked, we use a crude method to

approximate the peak of R wave by taking the average of the QRS start and points.

This method is not very accurate and is contingent upon the detection of the QRS

complex. The R wave peaks approximated by this method have been marked in

Figure 5-13.

5.3.2 RR interval

Since we know the approximate R wave peak location, we can now plot RR-intervals.

Figure 5-14 presents the running average of the three consecutive RR-intervals. It can

be seen that the RR-interval length varies.

Figure 5-13 R peak approximation

44

Figure 5-14 Mean RR interval plot

45

6 Support Vector Machine for Abnormal

Beat Detection
This chapter details the method used for abnormal cardiac beat detection. A one-class

Support Vector Machine (SVM) trained on QRS complex samples was used as a

classifier since negative examples were not available. The Python code for one-class

SVM has been reproduced in Appendix E.

6.1 Support Vector Machines

The detection of abnormal cardiac beats is a classification problem. That is, by

analyzing each cardiac beat in an ECG record we have to determine whether the beat

is normal or abnormal. Since ECG morphologies vary across individuals, therefore to

classify a particular individual’s cardiac beats as abnormal we need a Machine

Learning algorithm that can be trained using that particular individual’s ECG. A

classifier trained using a large number of “normal” beats from different individuals

might not work for another individual. A support vector machine is a classifier which

given labeled training data, produces an optimal function which can then be used to

categorize new examples. We use a one-class SVM for abnormal cardiac beat

detection.

Traditionally SVM is used for binary or multiclass classification. That is,

given a dataset we try to determine the class of each element in the dataset by using

previous knowledge about the elements known to belong to a particular class.

Suppose we have a dataset with points belonging to two different classes, hollow and

filled. Figure 6-1 illustrates the dataset.

Figure 6-1 Data set with two types of points: hollow and filled.

46

We can separate the two classes by drawing a line since the data is linearly separable.

In Figure 6-1 line 1 and line 3 separate the data while line 2 fails to do so. We can use

line 1 and line3 as classifiers. The optimal classifier however would maximize the

perpendicular distance from data points belonging to the two classes since it would

reduce the chance of error if a new data point were now to be introduced and

classified. The points that lie closest to the separating line in this example are called

support vectors. Figure 6-2 marks the support vectors for line 1 and line 3.

Support Vector Machines are linear classifiers that produce the optimal

separating boundary, line 1 in this case, given a set of labeled training data. Once the

separating boundary has been learned, new data points (testing data) can then be

classified.

Formally for a two-class support vector machine, consider the data set Ω =

{(𝑥1, 𝑦1), … (𝑥𝑛, 𝑦𝑛)} where 𝑥𝑖 ∈ 𝑅𝑑 and 𝑦𝑖 ∈ {−1, 1} and 𝑦𝑖 indicates the class of

input vector 𝑥𝑖 [20]. The SVM uses a linear discriminant function to differentiate

Figure 6-2 Support Vectors

47

between input vectors ‘x’ belonging to different classes. This linear discriminant

function is given in Eq. 6.1.

 𝑓(𝑥) = 𝑠𝑔𝑛(𝑤𝑇𝑥 + 𝑏) (6.1)

An SVM training algorithm finds ‘w’ and ‘b’ in such a way so as to maximize

the margin, as in Figure 6-2, while classifying all the marked training points correctly.

That is we need to maximize the margin ‘ρ’, as in Eq. 6.2, while fulfilling the

conditions in Eqs. 6.3 and 6.4 [21].

max ρ =

2

‖𝑤‖

(6.2)

 𝑤𝑇𝑥𝑖 + 𝑏 ≤ −1 ∀ 𝑖 𝑠. 𝑡. 𝑦𝑖 = −1 (6.3)

 𝑤𝑇𝑥𝑖 + 𝑏 ≥ 1 ∀ 𝑖 𝑠. 𝑡. 𝑦𝑖 = 1 (6.4)

In order to classify data points which cannot be separated by a linear classifier

in their original space𝐼, the data points are projected to a feature space 𝐹 through a

non-linear function 𝛷 where they can be separated by a hyperplane. The hyperplane

projected back to original space 𝐼 has the form of a non-linear curve. To avoid over

fitting in the presence of noisy data and to provide a solution to the non-linear

problem, we use a slack variable 𝜉𝑖 ≤ 0 to allow some data points to lie inside the

margin ‘ρ’. This is known as soft margin SVM. In general we do not project the input

vector to the feature space and use a ‘kernel function’ which has the same effect [21].

This is known as the ‘kernel trick’. Eqs. 6.2 – 6.4 change as in Eqs. 6.5 - 6.6 due to

introduction of the slack variable.

min
1

2
 𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

(6.5)

such that

 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖

(6.6)

The parameter C determines the penalty due to margin violation.

48

6.2 One-class SVM

The previous section was geared towards a general treatment of SVM where we had

to differentiate between two or more classes. However, since we only have normal

ECG recordings, we need to use one-class SVM. One-class classifiers use training

examples from only one class to generate a conception of the data which can then be

used to determine whether a new sample point belongs to that class or not.

Formally given training examples(𝑧𝑖 , 𝑖 = 1 … 𝑁), one-class SVM generates

a decision function 𝑓(𝑧) = 𝑤𝑇𝛷(𝑧) + 𝑏 such that for data in the target class, 𝑓(𝑧) ≥

0 while 𝑓(𝑧) < 0 for outliers. ‘w’ is chosen such that the hyperplane 𝑓(𝑧) lies at a

maximum perpendicular distance from the origin [22].

Analogous to the parameter C in traditional SVM, one-class SVM uses a

parameter ′𝜐′ which sets an upper bound on the fraction of outliers in training set and

a lower bound on the number of training examples used as support vector.

The approach discussed below uses randomly selected beats from an ECG

record to train a one-class SVM algorithm. This particular method has been shown to

reach Sensitivity (Se)/Specificity (Sp) of 87.6%/95.8% [23].

6.3 Implementation

This section discusses the implementation of one-class SVM used for abnormal beat

detection.

Figure 6-3 Feature extraction

49

6.3.1 Feature Extraction

In order to apply one-class SVM we need to extract features from the ECG. We

assume that all the beats in the sample are normal. A 0.6 second interval of samples,

centered on the R wave, was extracted from randomly selected R waves in the ECG

recording. One third of all such samples were used for training while the rest were

used for testing. Figure 6-3 presents a sample of the ECG records used for training.

6.3.2 Training and Testing

One-class SVM was implemented using scikit-learn, a Python machine learning

library. The aforementioned randomly selected ECG records were used as training

data while the rest of the samples in the recording were used for testing. The one-class

SVM algorithm returns +1 for input vectors classified as belonging to the target class

while it returns -1 for outliers. Figure 6-4 presents the results obtained for one ECG

recording with a polynomial kernel. Generally with a soft-margin SVM,

misclassifications are unavoidable.

6.3.3 Evaluation

For proper evaluation of one-class SVM, we would need a set of known outliers to

test our particular implementation of one-class SVM. Since the ECG data isn’t

annotated that sort of evaluation isn’t possible. In the ideal scenario, we would have

an ECG record with abnormal and normal beats annotated by a cardiac expert. In that

Figure 6-4 Training and testing errors

50

case we can calculate sensitivity and specificity to provide a metric for the accuracy

of the algorithm.

51

7 Conclusions and Future Work

This work was aimed at the design of an ECG acquisition and analysis system. The

main focus of this work has been the implementation of a flexible interface for our

acquisition hardware and the detection of QRS complexes for abnormal beat

detection. In this chapter we present our conclusions about different techniques

implemented in this work along with the issues which can be resolved in another

undertaking of a similar nature.

The ECG signal obtained from our acquisition hardware is contaminated with a

number of artifacts of which power line interference has proven to be intractable.

While analog and digital filtering of the ECG, as discussed above helps, a more robust

acquisition circuitry with better common mode rejection ratio and a greater focus on

analog filtering can increase the reliability of the acquisition circuitry. Furthermore,

the acquisition circuitry currently only provides the option for single lead (lead I)

ECG acquisition.

A microcontroller was used to digitize the acquired ECG and to develop a USB

interface for our acquisition hardware. We wrote an application to communicate with

our acquisition module from a Personal Computer or Laptop. The application allows

the user to acquire ECG, view it by generating a plot, saving it to a file and to stream

the acquired signal to a remote server. This application has been tested to work on

Linux based systems. The development of an application to do the same using an

android or other cell phone would greatly enhance the portability of the acquisition

module.

Forward backward band pass (0.5 -45 Hz) filtering of the acquired signal was

implemented in order to reduce the computational complexity introduced by a high

order FIR filter with similar characteristics. The filter successfully removes baseline

variations and reduces the noise added through power line interference.

The identification of QRS complexes is a fundamental component of an automated

ECG analysis system. The length transform algorithm was used for detection of QRS

fiducial points and R wave peak detection. The QRS complex comprises a majority of

the curve length of the ECG and the length transform algorithm approximates the

52

curve length through a simple difference operation of the acquired sample values. The

algorithm is reliable but the QRS start and end points can be detected with greater

accuracy using other algorithms. The detection of the R wave peak in our system

hinges on the correction detection of QRS complex fiducial points since we

approximate the R wave peak as the midpoint of the QRS start and end.

The system implements two main diagnostic utilities. First, it allows the user to view

the running average of the RR intervals. Secondly, we have implemented a one-class

SVM to detect abnormal cardiac beats. Both of these utilities would benefit from a

cleaner ECG record. Furthermore, the one-class SVM would function better with a

better feature extraction mechanism and a larger ECG record which would provide

more data for training. The one-class SVM can be supplemented or replaced by other

classification techniques. If annotated ECG training data were available, a binary

SVM could be used.

 The integrated system can be used as a portable device for long term remote

monitoring of cardiac patients. If the android interface were available, the acquisition

circuitry along with an android phone could be used to stream an ECG record to a

remote server for analysis which can then alert a medical expert if needed. The system

can thus be used as portable monitoring system

The analysis algorithms can be coupled with a database of ECG records of different

patients for automatic analysis of the ECG. This would reduce the burden on a cardiac

expert since the expert could then only review the ECG records flagged by the

analysis system.

53

Appendix A

Parameter Setting of ADC

The 10-bit analog to digital converter (ADC) module of PIC18F4550 consists of five

registers.

1) A/D Result High Register (ADRESH)

2) A/D Result Low Register (ADRESL)

3) A/D Control Register 0 (ADCON0)

4) A/D Control Register 1 (ADCON1)

5) A/D Control Register 2 (ADCON2)

The result of an A/D conversion is loaded into ADRESH: ADRESL register pair. The

remaining three registers are used to control the operation of analog to digital

converter (ADC) module.

The configuration of the three control registers of ADC module for converting analog

ECG signal to digital (binary) form are described below with details,

A.1 A/D Control Register 0 (ADCON0)

The various bits in the register are shown below in Figure A-1.

The analog to digital converter (ADC) module of PIC18F4550 has thirteen input

channels. Among the available channels we selected channel 0(AN0). Therefore the

values for analog channel select bits become,

CHS3:CHS0

0000 = Channel 0 (AN0)

Initially the module remains disabled so,

Figure A-1 ADCON0 Register

54

ADON = 0

 The value of GO/ DONE doesn’t matters if ADON=0.

GO/ DONE = 0

A.2 A/D Control Register 1 (ADCON1)

The various bits in the register are shown below in Figure A-2.

Since the amplitude of analog ECG signal varies from -1Volts to +1Volts, we have to

use external reference voltages for analog to digital converter module. The values for

voltage reference configuration bits are,

VCFG1 = 1

VCFG2 = 1

Since we required only one channel (AN0) to be used for analog input, the values for

A/D port configuration bits are,

PCFG3:PCFG0 = 0000

A.3 A/D Control Register 2 (ADCON2)

The various bits in the register are shown below Figure A-3.

The result of analog to digital conversion was right justified; therefore the value of

A/D result format select bit was selected to be,

ADFM = 1

Figure A-2 ADCON1 register

Figure A-3 ADCON2 register

55

The minimum acquisition time for PIC18F4550 was 0.772µs. The microcontroller

was operating at 48MHz. Thus the values for A/D acquisition time select bits came

out to be,

ACQT2:ACQT0

111 = 20TAD

The A/D conversion clock select bits were selected to be,

ADCS2:ADCS0

100 = Fosc /4

56

Appendix B

UNIVERSAL SERIAL BUS (USB)

The universal serial bus (USB) is a high speed serial interface that is used to

transmit digital data to a PC. The bus can also power up the devices connected to it. A

USB interface is implemented using four wires as discussed below,

Table B-1 USB wires specification

Pin Name Wire color Description

1 VBUS Red +5 Volts

2 D- White Data -

3 D+ Green Data +

4 GND Black Ground

PIC18F4550 has a USB peripheral which supports full speed (12Mbps) and low speed

(1.5Mbps) communication with any USB host and microcontroller.

B.1 Configuration Bits

Configuration bits of a microcontroller allow the user to customize certain

aspects of the device to the needs of the application. When the device powers up, the

state of these bits determines the modes that the device uses. The settings made for

configuration bits during the development of the project are given below,

 External oscillator was selected

 HS,PLL was enabled

 The clock source for USB was set from the output of PLL

 The default values of other configuration bits were used

 Pre-scaler value was set to 5

 Post-scaler value was set to 2

B.2 Description of MikroC USB Library Functions

Following MikroC USB library functions were used in the project.

57

1 Hid_Enable (&readbuffer, &writebuffer)

This function enables the USB communication and requires two arguments: Read

buffer address is the location in microcontroller RAM where data sent by host is

stored. Write buffer address is the location in microcontroller RAM where data sent

by microcontroller is stored. This function must be called before calling any other

functions of the USB library.

2 Hid_Read ()

This function receives the data from USB bus and stores in the read buffer. It

returns the number of characters received.

3 Hid_Write (&writebuffer, length)

This function sends the data from write buffer to the USB bus. The name of the

buffer and the length of the data to be sent must be specified as arguments to the

function. The function does not return any data.

4 Hid_Disable ()

This function disables the USB data transfer. It has no arguments and returns no

data.

5 Usb_Interrupt_Proc ()

This function is used for servicing various USB bus events. The function requires

no parameters. It must be ensured before using this function that USB interrupts are

enabled.

58

Appendix C

Code for USB interface implementation

/*----------------------------------- Description:--

 The code accomplishes the following tasks,

 1. Converts analog ECG signal to a set of 10-bit digital values.

 2. Transmit the digital ECG signal to a PC using USB.

 * Test configuration:

 MCU(Microcontroller): PIC18F4550

 http://ww1.microchip.com/downloads/en/DeviceDoc/39632D.pdf

 Oscillator: HS 20.000 MHz (USB osc. is raised with PLL to 48.000MHz)

---End of Description-----------------------------*/

//Buffers should be in USB RAM , please consult datasheet for details

unsigned char readbuff [64] absolute 0x500;

unsigned char writebuff [64] absolute 0x540;

//Variables are used to measure the USB data transfer time and minimize the //variation in

sampling time

int value;

int new_value;

//Variable used to count the number of conversions

int i;

//-------------------------------------USB Interrupt Service Routine---------------------

void interrupt(){

USB_Interrupt_Proc();

}

//------------------------------------End of Interrupt Service Routine----------------------

--

//------------------------------------Start of Main Function--------------------------------

void main()

{

 INTCON = 0x80; //Enable Interrupts

 ADCON0 = 0x00; //Initially disabling the analog to digital converter

 // and selecting channel AN0

 ADCON1 = 0x00; //Configuring all the ports as analog and setting

 //internal voltage ref.

 ADCON2 = 0xBC; //Making the required settings as described in the section

 //for ADCON2

 T0CON=0x08; //Required Settings for Timer Zero

59

 TMR0IE_bit=0; // Timer Zero Interrupt Disabled

 TMR0L=0x00; //Load Timer Zero with 0

 TMR0H=0x00;

 i = 0;

 label: HID_Enable(&readbuff , &writebuff); //Enable HID Communicatio

 while (!HID_Read()); //Wait Unless a read operation is successful

 ADCON0 = 0x01; // Enable ADC

 TMR0ON_bit =1 ; //Start Timer Zero

 while (!HID_Read()) //Continue Loop unless a read operation is

 //successful

 {

 GO_DONE_bit = 1; //Start ADC conversion

 while (GO_DONE_bit == 1); //Wait unless the conversion is complete

 writebuff [i] = ADRESL; //Write the results of conversion to USB RAM

 writebuff [i+1] = ADRESH;

 i=i+2;

 if (i==64) //Check that 32 conversions are complete or not

 {

 TMR0L=0x00; //Load Timer0 with Zero

 TMR0H=0x00;

 while (!HID_Write(&writebuff , 64)); //Send the results of Conversion to PC

 value = TMR0H<<8+TMR0L; //Read the time for USB

 //transfer

 new_value = 65536-24000-value; //new_time = 2.2ms - time

 TMR0L = new_value; //Load Timer0 with new time

 TMR0H = new_value>>8;

 TMR0IF_bit = 0; //Set Interrupt Flag to Zero

 while(!TMR0IF_bit); //Wait until timer0 interrupt occurs

 i = 0; //Set i=0

 continue; //Start new conversion by going to the

 //top of loop

 }

 delay_us(2200); //Sampling Time

 }

goto label;

}

//-------------------------------End of Main Function-------------------------------------

60

Appendix D

Python code for USB compatible Device

'''

The code is written for Python3 and operates correctly when run from the terminal shell on

Linux Ubuntu version 14.04.

'''

: For one line comments

#''':For multiple line comments

importing the required modules

import multiprocessing

import usb.core

import usb.util

import matplotlib.pyplot as plt

import socket

import tty,select,sys,termios

import binascii

import struct

import sys

import random

'''

Connect_USB method connects the microcontroller to the PC. The Vendor and Product for the

microcontroller are 0x0001 and 0x1234

respectively. The method searches for the device and then detaches the kernel driver, which

was connected to the device upon connection. The configuration for the device is then set and

addresses for the ENDPOINT IN and ENDPOINT OUT are obtained.

'''

def Connect_USB():

 global dev,reattach,endpoint #Make the variables global

dev = usb.core.find(idVendor = 0x0001,idProduct = 0x1234)

 #Find the device with the given Vendor and Product ID

 reattach = False

 if dev.is_kernel_driver_active(0):

#Checks whether the kernel driver is active or not. If kernel driver

 reattach = True

 #is active then detach the kernel driver.

 dev.detach_kernel_driver(0)

 dev.set_configuration()

 #Set the configuration for the device.

 cfg = dev.get_active_configuration()

 intf = cfg[(0,0)]

61

 endpoint = (dev[0][(0,0)][0])

 ep = usb.util.find_descriptor(

 intf, custom_match = \

 lambda e:\

 usb.util.endpoint_direction(e.bEndpointAddress)== usb.util.ENDPOINT_IN)

#Adresses for ENDPOINT IN and ENDPOINT OUT

'''

The method Acquire_Data has a queue(Que) as an argument. This method gets the data from the

usb and puts it in the queue after converting the ten bit ADC results into a corresponding

integer.

'''

def Acquire_Data(Que):

 dev.write(0x01,[1])

#Write '1' to the microcontroller so that process of data sending starts

 temp_64 = [] #Empty list to save data

 while (True):

 data = dev.read(endpoint.bEndpointAddress,endpoint.wMaxPacketSize,5000)

#Read data sent by the microcontroller with a timeout=5ms

 length = len(data) #Finding Length of data

 for i in range(int((length-2)/2)):

 temp = [data[2*i],data[2*i+1]]

 num = int.from_bytes(temp,'little',signed = False)

#Converting data bytes to integer

 temp_64.append(num)

 temp_data = list(temp_64) #Copying List to a new list

 Que.put(temp_data) #Writing data to the queue.

 del temp_64[0:] #Deleting items from the list

'''

The method Save_File has also queue as an argument. The data in queue is read and written to

the file.

'''

def Save_File(Que):

 step = 5/1024 #Step used to convert data integers into voltages

 file = open('ecg.txt','w') #Open a file 'ecg.txt' in write mode

 while (True):

 read = list(Que.get()) #Read data from the queue and convert it into list.

 for i in range(len(read)):

 file.write(str(read[i]*step)+'\n')

#Writing to file after making strings of the voltages and appending a new line #chracters

'''

The method Stream has also a queue as an argument(Que). A socket is created and connected to

the server ip 192.168.233.107. the communication will happen through the port '10000'. A

structure object packer is created. The argument shows that this structure will operate on a

62

data that is list with 32 items and items are integers. Packer object is used to pack(convert

to binary) the data in values which was read from queue. The binary data is then converted to

hex format and sent to the server.

'''

def Stream(Que):

 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

#Create a TCP/IP socket

 server_address = ('192.168.233.107', 10000)

 sock.connect(server_address) #Connect to socket

 values = Que.get() #Read values from the Queue

 packer = struct.Struct('I '*32) #Creating Packer object

 packed_data = packer.pack(*values) #Converting Values to binary

 try:

 print ('sending "%s"' % binascii.hexlify(packed_data), values)

#Converting binary data to hex format

 sock.sendall(packed_data) #Send data through socket

 finally:

 print ('closing socket')

 sock.close() #Closing socket

'''

The method Real_Time_Plot has also a queue as an argument. The function creates a figure and

plots a line corresponding to y = 0 for 1000 points. Limits for the y-axis of the plot are

then set to the range '-10' to '10'. The data is then read from the queue and put in y. The

data is then updated and plotted

'''

def Real_Time_Plot(Que):

 fig = plt.figure() #Create an empty figure

 ax = fig.add_subplot(111) #Add a subplot to the figure

 y = [0]*1000

 li, = ax.plot(y) #Create a plot object later used to plot updated data

 plt.grid(True) #Turn grid on

 fig.canvas.draw()

 plt.show(block = False) #Show Plot

 plt.ylim((-10,10)) #Set y-limits

 while (True):

 read = qu.get() #Read data from queue

 del y[0:len(read)]

 y = y+a

 li.set_ydata(y) #Plot updated data

 fig.canvas.draw()

 del read[0:]

63

'''

The function isData monitors the terminal for input. If their is an input on the terminat the

function returns 1 otherwise 0.

'''

def isData():

 return select.select([sys.stdin], [], [], 0) == ([sys.stdin], [], [])

'''

The method main gets the setting of the terminal before performing any other task. The method

Connect_USB is called afterwards and if the connection is established 'USB_Connected' is

printed. A multiprocessing queue is then formed which is used to share data between two

processes. Two processes are then created and started which run in paralell. The first process

calls the fuction Acquire_Data while the second process can call any one of the fuctions

'Save_File' , 'Real_Time_Plot' or 'Stream'. The main then monitors the terminal for input. If

'ESc' key is pressed the main terminates the child processes and also stops the

microcontroller by writing '1' to the microcontroller.In the end, the device is reattached to

the kernel driver.

'''

if __name__ == "__main__":

 old_settings = termios.tcgetattr(sys.stdin) #Get the settings of terminal

 Connect_USB() #Calls the Connect_USB method

 print ('USB_Connected')

 que = multiprocessing.Queue()

#Creates a Queue to share data between processes

 p1 = multiprocessing.Process(target = Acquire_Data, args = (que,))

#Define processes. Target specifies the function to be run as a seperate process

 p2 = multiprocessing.Process(target = Stream, args = (que,))

 p1.start() #Start both processes

 p2.start()

 try:

 tty.setcbreak(sys.stdin.fileno())

#Monitors the terminal for input. If 'Esc' key is pressed the finally block executes

 while (True):

 if isData():

 c = sys.stdin.read(1)

 if (c == '\x1b'):

 break

 finally:

 termios.tcsetattr(sys.stdin, termios.TCSADRAIN, old_settings)

#Reassign the old settings to terminal

 p1.terminate() #Close process 1 and 2

 p1.join()

 p2.terminate()

 p2.join()

64

 usb.util.dispose_resources(dev)

 dev.attach_kernel_driver(0) #Reattach Kernel driver

 print ('USB_Disconnected')

#---------------------------------Server code for Host--------------------------------

import binascii

import socket

import struct

import sys

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server_address = ('192.168.233.107', 10000)

sock.bind(server_address)

sock.listen(1) #Server listens to a single client

unpacker = struct.Struct('I '*32) #A structure used to unpack the data sent by client

while True:

 print ('\nwaiting for a connection')

 connection, client_address = sock.accept()

 try:

 data = connection.recv(unpacker.size)

 print ('received "%s"' % binascii.hexlify(data)) #Convert binary to hex format

 unpacked_data = unpacker.unpack(data)

 print ('unpacked:', unpacked_data)

 finally:

 connection.close() #Close Connection

65

Appendix E

Python Code for ECG Analysis

from scipy import signal, ndimage

from numpy import array,diff, append,int8,where,mean, int32, floor, std

import numpy as np

from numpy import ones as np_ones

from matplotlib import pyplot as plt

from random import randint

from sklearn import svm

#---Read ECG function---------------------------

def read_ecg():

 file_name = input("Please enter path and name of file ") #Recorded ECG file

 if file_name == '':

 file = open ('D:\\University\\7th Semester\\FYP\\python\\hasan1_ecg.txt','r')

 else:

 file = open (file_name, 'r')

 ecg_sig = [] #For reading data from file

 for i in file:

 ecg_sig.append(int(file.readline()))

 file.close()

 return ecg_sig

#-- Block Processing function (mean) -----------

def funm(data,length):

 '''funm(data,length) takes mean of each window of length "length" in data.

 Data should be a list

 inputs:

 data - a list containing data points

 length - window length for mean calculation￼

 output:

 z - a list of length "len(data)" with elements replaced by mean of elements

 falling in each window of length "length"

 example:

 >>> z = funm([1,2,3,4,5] , 2)

 >>> print(z)

 [1.5, 1.5, 3.5, 3.5, 5.0]

 '''

 z = []

 number = floor(len(data) / length)

 zeros = int32((len(data) - number*length))

 for i in range(int32(number)):

 block = data [i*length:(i+1)*length]

66

 ones = length*[mean(block)]

 z.extend(ones)

 lst_mean = mean(data[-zeros:])

 ones = zeros*[lst_mean]

 z.extend(ones)

 return z

#----------------------- Block Processing function (standard deviation) ---------------------

def funs(data,length):

 '''funs(data,length) takes mean of each window of length "length" in data.

 Data should be a list

 inputs:

 data - a list containing data points

 length - window length for mean calculation￼

 output:

 z - a list of length "len(data)" with elements replaced by standard deviation of

elements

 falling in each window of length "length"

 example:

 >>> z = funs([1,2,3,4,5] , 2)

 >>> print(z)

 [1.5, 1.5, 3.5, 3.5, 5.0]

 '''

 z = []

 number = floor(len(data) / length)

 zeros = int32((len(data) - number*length))

 for i in range(int32(number)):

 block = data [i*length:(i+1)*length]

 ones = length*[std(block)]

 z.extend(ones)

 lst_std = std(data[-zeros:])

 ones = zeros*[lst_std]

 z.extend(ones)

 return z

#--------------------------------QRS detection function --------------------------------------

def QRS_LT (samp, ecg_sig,noise_fac = 0.5):

 ''' QRS_LT(samp,ecg_sig,noise_fac) implements the length transform method

 for QRS detection based on a simple derivative approach.

 inputs:

 samp: sampling frequency

 ecg_sig: a list (not np.array) containing ecg data points

67

 noise_fac: a factor which can be used to suppress the effects of noise

 on QRS detection. For high noise, choose a noise factor closer to 1.

 The default value is zero.

 outputs:

 index_on: list containing sample numbers indicating start of a QRS

 index_off: list containing sample numbers indicating end of a QRS

 Note that the two lists are populated such that we first count a QRS starting

 point and then the ending point. This means that if ecg_sig contains a QRS

 ending point without a starting point, it will be neglected.

 '''

 MF = 2.0

 qrs_size = 0.12*samp

 min_qrs_size = 0.04*samp

 nyq = samp/2

#----------------------------- Bandpass filtering --

 coeff = signal.firwin2 (101, [0, 8/nyq, 10/nyq, 25/nyq, 27/nyq, 35/nyq, nyq/nyq],

[0,0.7,1,1,0.7,0,0], window = 'blackman')

 initial = 100

 delay = (initial // 2) #Remove delay introduced by

FIR filter

 ecg_sig.extend(delay*[0]) #Append zeros equal to delay at the end

 ecg_sig = signal.lfilter (coeff, 1, ecg_sig) #Filter

 ecg_sig = ecg_sig[delay:] #Remove delay so that filtered and original

 #data line up

#----------------------------- Differentiation and squaring ---------------------------------

 ecg_sig = diff (ecg_sig)

h = array([-2, -1, 1, 2])/8

 ecg_sig = append(ecg_sig,[0])

 ecg_sig = [i**2 for i in ecg_sig]

 #------------------------------ Thresholding --

 T_win = 4*samp

 threshold = funm(ecg_sig,T_win)

 #Call block processing function(mean) with window length T_win

 noise_fac = noise_fac*max(threshold)

 threshold = noise_fac + MF*array(threshold)

 decision = (ecg_sig > threshold)

 decision.dtype = int8

#--------------------------------------Morphological closing and opening --------------------

 struct_close = np_ones(qrs_size)

 #structure for morphological closing

 decision = ndimage.morphology.binary_closing(decision,struct_close)

 decision.dtype = int8

#function returns bool

68

 struct_open = np_ones(min_qrs_size) #structure for morphological opening

 decision = ndimage.morphology.binary_opening(decision,struct_open)

 decision.dtype = int8

#function returns bool

 decision1 = append(diff(decision), [0])

#after difference: 1 denotes start of QRS, -1 end of QRS (plot it)

#--Find indices ---------------------------------------

 index_on = where(decision1 == 1) #returns tuple

 index_on = index_on [0]

#first element of tuple contains the array of our interest

 index_off = where(decision1 == -1)

 index_off = index_off [0]

 if (len(index_on) > 0 and len(index_off) > 0): #Non-empty

 if (index_off[1] < index_on[1]):

 index_off [1] = []

#ECG starting index < ECG closing index

 if (len(index_off) == 0 or (index_on[-1] > index_off[-1])):

 index_on [-1] =[]

#Again only sets of QRS onset and offest are being included

 else:

 index_on = []

 index_off = []

 return index_on, index_off

#---Band pass filter------------------------------------

def bandpass_filter(samp, ecg_sig):

 '''

 bandpass filters the signal using chebyshev filter of order using forward

 backward filtering

 input:

 samp: sampling frequency in Hz

 ecg_sig : Signal to be filtered

 output:

 response: forward backward filtered ecg_sig

 b = np.array([0.06876288, -0.42392463, 1.19560393, -2.12170399, 2.69859612,

 -2.50278218, 1.48077995, 0. , -1.48077995, 2.50278218,

 -2.69859612, 2.12170399, -1.19560393, 0.42392463, -0.06876288])

 a = np.array ([1.00000000e+00, -8.49604161e+00, 3.35577780e+01,

 -8.22283201e+01, 1.40439389e+02, -1.77470173e+02,

 1.71326048e+02, -1.28356988e+02, 7.49712127e+01,

 -3.39410935e+01, 1.16939037e+01, -2.95566529e+00,

 5.02936968e-01, -4.13786796e-02, -1.60836561e-03])

69

 '''

 from scipy import signal

 nyq = samp/2

 b,a = signal.iirdesign ([2/nyq, 40/nyq], [0.5/nyq, 45/nyq],1,30)

 response = signal.filtfilt(b,a, ecg_sig)

 return response

#-------------------------------------- RR_interval --

def rr_interval(index_on, index_off):

 '''

 rr_interval(index_on, index_off) simply returns the average of the corresponding

 elements of index_on and index_off

 Inputs:

 index_on: A np.ndarray containing sample numbers correspoding to the start of a QRS

complex

 index_off: A np.ndarray containgin sample numbers correspoding to the end of a QRS complex

 Output:

 rr_interval: A np.ndarray containing the average of correspoding samples in the input

arrays

 Please note the function only works if all the elements in index_on are smaller than the

corresponding

 elements in index_off and the length of the two arrays is equal.

 '''

 rr_int = np.array([])

 if ((index_on < index_off).all() and len(index_on) == len (index_off)):

 for i in range (len(index_on)):

 rr_int = np.append(rr_int , (index_on[i] + index_off[i])//2)

 return rr_int

#------------------------------------ Block Processing of RR-Intervals-----------------------

def rr_block (rr_int, no_of_samples):

 '''

 rr_block (rr_int, no_of_samples) block processes the elements in rr_int (takes block mean

of 3 rr_intervals)

 and returns an np.array equal to the length of rr_int.

 inputs:

70

 rr_int: Input list/np.array containing the sample point of an R in an ECG signal.

 no_of_samples: Total number of samples of the ECG signal for which the RR_intervals

 are to be calculated.

 output:

 An np.array 'c' which contains the average of three consecutive RR intervals

 generated from rr_int.

 '''

 interval_length = diff(rr_int)

#Calculate rr_interval length

 c = np.array([])

 c = np.append(c , interval_length [0] *(np.ones(rr_int [0])))

#Array which holds average of each block of 3 RR - intervals

 number = len(interval_length) // 3

 zeros = len(interval_length) - number*3

 for i in range (0, number*3, 3):

 mean_value = (interval_length [i] + interval_length [i+1] + interval_length [i+2])/3

#Take mean

 time_average_gen = mean_value*np.ones((rr_int[i+3] - rr_int[i]))

 c = np.append (c, time_average_gen)

 mean_value = mean(interval_length[-zeros:])

 c = np.append(c, mean_value*(np.ones((no_of_samples - rr_int[number*3]))))

 return c

#---Running mean--------------------------------

def moving_average(rr_int, total_samples, length = 3):

 '''

 mvoing_average() calculates the moving average of samples

 in rr_int and returns an array c containing the running

 average of the rr_intervals which can be directly plotted

 '''

 interval_length = diff(rr_int) #Calculate rr_interval length

 weights = np.repeat(1.0, length)/length

 mov_average = np.convolve(interval_length,weights,'valid')

#Moving average of RR intervals

 boundary = np.array([mean(interval_length[-2:]), interval_length[-1]])

#Handle conditions at the boundary of the interval_length array

 mov_average = np.append(mov_average,boundary)

 c = np.array([])

 c = np.append(c , interval_length [0] *(np.ones(rr_int [0])))

 for i in range(0,len(mov_average)):

 c = np.append(c,mov_average[i]*np.ones(rr_int[i+1]-rr_int[i]))

 c = np.append(c, mov_average[-1] * np.ones(total_samples - rr_int[-1]))

 return c

71

#-------------------------Extract samples for ONE CLASS SVM---------

def extract_samples(ecg_sig, samp, rr_int):

 '''extract_samples(ecg_sig,samp,rr_int) extracts 0.6 seconds intervals around

 each R wave and returns an array (numpy) of arrays which contains intervals

 corresponding to each R wave.

 output:

 qrs: extracted qrs complex samples

 sample_numbers: Start and end point of extracted QRS complexes

 '''

 intervals = []

 qrs_sample_numbers = []

 for i in range(0, len(rr_int)):

 if i == 0:

 if (rr_int [i] - int(samp*0.3)) >= 0:

 intervals.append(ecg_sig[int(rr_int [i]) - int(samp*0.3) : int(rr_int [i]) +

int(samp*0.3)])

 qrs_sample_numbers.append([int(rr_int [i]) - int(samp*0.3) , int(rr_int [i]) +

int(samp*0.3)])

 elif i == len(rr_int)-1:

 if(rr_int [i] + 0.3*samp) < len(ecg_sig):

 intervals.append(ecg_sig [int(rr_int[i]) - int(samp*0.3): int(rr_int[i]) +

int(samp*0.3)])

 qrs_sample_numbers.append([int(rr_int [i]) - int(samp*0.3) , int(rr_int [i]) +

int(samp*0.3)])

 else:

 intervals.append(ecg_sig [int(rr_int[i]) - int(samp*0.3): int(rr_int[i]) +

int(samp*0.3)])

 qrs_sample_numbers.append([int(rr_int [i]) - int(samp*0.3) , int(rr_int [i]) +

int(samp*0.3)])

 return intervals, qrs_sample_numbers

#----------------------------------ONE CLASS SVM---------------------------

def outlier_detection(qrs, rr_int):

 '''

 outlier_detection (qrs, rr_int) trains a one-class SVM with 1/3

 of the samples in qrs for training and the rest for testing.

 index_test contains indexes of "qrs" used for training

 '''

 length = int(len(qrs)/3) + 2

 index_train = []

 index_test = []

 for i in range (length):

 random_number = randint(0,len(qrs))

 if (random_number not in index_train):

 index_train.append(randint(0, len(qrs)-1))

72

 index_train.sort()

 X_train = []

 X_test = []

 for i in range(len(qrs)):

 if (i in index_train):

 X_train.append(qrs[i])

 else:

 X_test.append(qrs[i])

 index_test.append(i)

 classifier = svm.OneClassSVM(nu = 0.01, kernel = 'poly', gamma = 1, degree = 2)

 classifier.fit(X_train)

 pred_train = classifier.predict(X_train)

 pred_test = classifier.predict(X_test)

 error_train = where (np.array(pred_train) == -1) #Find indexes with -1

 error_test = where (np.array(pred_test) == -1) #Find indexes with -1

 errors_train = []

 errors_test = []

 train_error = []

 #Sample number of QRS complexes which used for training and returned errors

 test_error = []

#Sample number of QRS complexes which used for testing and returned errors

 if (len(error_train[0]) != 0):

 for h in range(error_train[0][-1]+1): #returns tuple

 if (h in error_train[0]):

 errors_train.append(index_train[h])

 errors_train.sort()

 for h in errors_train:

 current = rr_int[h]

 train_error.append(current)

 if (len(error_test[0]) != 0):

 for z in range(error_test[0][-1]+1):

 if (z in error_test[0]):

 errors_test.append(index_test[z])

 errors_test.sort()

 for b in errors_test:

 current = rr_int[b]

 test_error.append(current)

 return train_error, test_error

#--

samp = 500

ecg_sig = read_ecg()

x = list(ecg_sig)

73

ecg_sig = bandpass_filter (samp, list(map(lambda x :x,ecg_sig)))

ecg_sig = ecg_sig.tolist()

ecg_sig1 = list(ecg_sig)

index_on, index_off = QRS_LT (samp,ecg_sig1)

rr_int = rr_interval (index_on, index_off)

mean_interval = (moving_average (rr_int, len(x)))/samp

time = (np.arange (0, len(ecg_sig))/samp).tolist()

plt.figure()

plt.subplot(211)

plt.vlines (rr_int, 0, 10, color = 'red', linestyles = 'solid', label = 'R wave')

plt.vlines (index_on,0,10, color ='blue', linestyles = 'dotted', label = 'QRS onset')

plt.vlines (index_off,0,10, color = 'green', linestyles = 'dashed', label = 'QRS offest')

plt.plot(ecg_sig, 'r--', label = 'ECG')

plt.xlabel ('Sample Number')

plt.ylabel ('Amplitude')

plt.title('QRS and RR interval annotated')

plt.legend()

plt.subplot(212)

plt.plot (time, mean_interval, 'r--', label = 'Mean RR interval')

plt.ylabel('time(s)')

plt.xlabel('time(s)')

plt.title('Running mean of RR-interval')

plt.legend()

plt.tight_layout()

plt.show()

qrs, sample_numbers = extract_samples (ecg_sig, samp, rr_int)

train_error, test_error = outlier_detection(qrs, rr_int)

74

References

[1] A. Alwan, "Global status report on noncommunicable diseases," World Health

Organization, 2010.

[2] M. Hussain, N. Khan, M. Uddin and M. M. A. Nozha, "Chest Pain, Coronary

Artery Disease and Risk Factors:A Global Snapshot," Journal of the Dow

University of Health Sciences Karachi, vol. 8, no. 2, pp. 80-86, 29 September

2013.

[3] T. Diehl, ECG Interpretation made Incredibly Easy!, Pennsylvania: Lippincott

Williams & Wilkins, 2011.

[4] R. Yazicioglu, C. V. Hoof and R. Puers, Biopotential Readout Circuits for

Portable Acquisition Systems, Springer, 2009.

[5] Enrique, "ECG Front-End Design is Simplified with MicroConverter®," Analog

Dialogue, vol. 37, no. 4, pp. 10 - 14, 2003.

[6] A. Sedra and K. Smith, Microelectronic Circuits, 6th Edition, Oxford University

Press, 2009.

[7] A. Devices, "AD 620: Low drift, Low power Instrumentation Amplifier,"

[Online]. Available: http://www.analog.com/en/specialty-

amplifiers/instrumentation-amplifiers/ad620/products/product.html. [Accessed

1 January 2015].

[8] T. Instruments, "LF353," [Online]. Available: http://www.ti.com/product/lf353.

[Accessed 1 January 2015].

[9] Microchip, "PIC18F4550," [Online]. Available:

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010300.

[Accessed 1 January 2015].

75

[10] Compaq, HP, Intel, Lucent, Microsoft, NEC Philips, "Universal Serial Bus," 27

April 2000. [Online]. Available:

sdphca.ucsd.edu/Lab_Equip_Manuals/usb_20.pdf. [Accessed 1 January 2015].

[11] A. Bhat, V. Kumar and and S. Kumar, "Design of ECG Data Acquisition

System," International Journal of Advanced Research in Computer Science and

Software Engineering, vol. 3, pp. 676-680, April, 2013.

[12] B. Lathi, Modern Digital and Analog Communication Systems, 3rd Edition,

New York: Oxford University Press, 1998.

[13] "Sound Card Bipolar Voltage to Frequency," Interstellar Research, 2007.

[Online]. Available: http://www.daqarta.com/dw_kkvv.htm. [Accessed 1

January 2015].

[14] "LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency

Converters," Texas Instruments, March 2013. [Online]. Available:

http://www.ti.com/lit/ds/symlink/lm331.pdf . [Accessed 1 January 2015].

[15] A. M. a. M. J. S. Kasar, "Performance of Digital filters for noise removal from

ECG signals in Time domain," International Journal Of Innovative Research In

Electrical, Electronics, Instrumentation And Control Engineering, vol. 2, no. 4,

pp. 1352-1355, 2014.

[16] V. Romero, "ECG baseline wander removal and noise suppression analysis in

an embedded platform," Universidad Complutense de Madrid, [Online].

Available:

URL:http://eprints.ucm.es/9886/1/ECG_baseline_wander_removal_and_noise_

suppression_in_an_embedded_platform.pdf. [Accessed 1 May 2015].

[17] J. Smith, "Introduction to Digital Filters with Audio Applications," Center for

Computer Research in Music and Acoustics (CCRMA),Stanford University,

2007. [Online]. Available: URL: http://ccrma.stanford.edu/~jos/filters/.

[Accessed 1 May 2015].

[18] V. Afonso, "ECG QRS Detection," in W.J. Tompkins, eds. Biomedical Digital

76

Signal Processing, New Jersey, Prentice Hall, pp. 236-264.

[19] G. M. D. J. W. Zong, "A Robust Open-source algorithm to Detect Onset and

Duration of QRS Complexes," in Computers in Cardiology, 2003.

[20] R. Vlasveld, "Introduction to One-Class Support Vector machines," 12 July

2013. [Online]. Available:

http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-

vector-machines/. [Accessed 1 May 2015].

[21] E. Alpaydin, Introduction to Machine Learning, London, England: The MIT

Press, 2010.

[22] K. C. S. F. e. a. P. Li, "An Abnormal ECG Beat Detection Approach for Long-

Term Monitoring of Heart Patients Based on Hybrid Kernel Machine

Ensemble," in Multiple Classifier Systems, Springer, 2005, pp. 346-355.

[23] F. A. Afsar, "A new novelty detector for finding abnormal beats in ECG

recordings," in International conference on Integrative Biology summit, Las

Vegas, 2013.

	Declaration of Originality
	Certificate of Approval
	Acknowledgements
	Table of Contents
	Table of Figures
	Table of Tables
	Abstract
	1 Introduction
	1.1 Objectives and Motivation of the project
	1.2 System Architecture
	1.2.1 Hardware Implementation
	1.2.2 Software Implementation

	1.3 Organization of the Report

	2 The Human Heart
	2.1 Electrical Conduction System of Heart
	2.1.1 Action Potentials in the Heart
	2.1.2 Initiation and Propagation Action Potentials in the Heart

	2.2 Measurement of Electrical Activity in the Heart
	2.3 ECG Systems
	2.3.1 The 12-Lead ECG System
	2.3.1.1 Limb Leads
	2.3.1.2 Precordial Leads

	2.3.2 Three Electrode ECG System:

	2.4 ECG Waveform
	2.4.1 P Wave
	2.4.2 QRS Complex
	2.4.3 T Wave
	2.4.4 U Wave
	2.4.5 PR Interval
	2.4.6 QT Interval
	2.4.7 ST Segment

	3 ECG Acquisition
	3.1 Basic Concept
	1
	2
	3
	3.1
	3.1.1 Electrodes
	3.1.1.1 Electrode Groups

	3.1.2 Electrode Types
	3.1.3 Amplifier
	3.1.3.1 Instrumentation Amplifier

	3.1.4 Filtering
	3.1.4.1 Noise
	3.1.4.2 Low Pass Filter

	3.2 ECG Acquisition System
	3.2.1 Instrumentation Amplifier
	3.2.2 Right Leg Drive
	3.2.3 Filtering

	4 Interfacing
	4.1 Interfacing using USB
	4.1
	4.1.1 Analog to Digital Converter (ADC)
	4.1.2 Universal Serial Bus (USB)
	4.1.2.1 USB bus communication
	4.1.2.2 Implementation of USB interface using PIC18F4550

	4.1.3 USB Compatible Device

	4.2 Interfacing using the Sound Card Input
	4.1.4 Frequency Modulation
	4.1.5 Voltage to Frequency Converter
	4.1.6 V to F converter design
	4.1.6.1 Specifications
	4.1.6.2 Circuit Diagram:
	4.1.6.3 Design:
	4.1.6.4 Testing

	4.1.7 Interfacing with the sound card
	4.1.8 Demodulation

	4.2 Acquisition and interfacing circuitry

	5 Artifact Removal and QRS Complex Detection
	5.1 Artifact Removal
	5.1.1 ECG Artifacts
	5.1.2 Artifact Removal Techniques
	5.1.2.1 Baseline wandering
	5.1.2.2 Power line Interference removal

	5.1.3 Implementation and Results

	5.2 QRS detection
	5.2.1 The Length Transform for QRS detection
	5.2.2 Implementation and Results
	5.2.2.1 Band Pass filtering
	5.2.2.2 Differentiation
	5.2.2.3 Squaring
	5.2.2.4 Thresholding
	5.2.2.5 Morphological post processing
	5.2.2.6 Detection of QRS fiducial points
	5.2.2.7 Results

	5.3 R wave
	5.3.1 R peak detection
	5.3.2 RR interval

	6 Support Vector Machine for Abnormal Beat Detection
	6.1 Support Vector Machines
	6.2 One-class SVM
	6.3 Implementation
	6.3.1 Feature Extraction
	6.3.2 Training and Testing
	6.3.3 Evaluation

	7 Conclusions and Future Work
	Appendix A
	A.1 A/D Control Register 0 (ADCON0)
	A.2 A/D Control Register 1 (ADCON1)
	A.3 A/D Control Register 2 (ADCON2)

	Appendix B
	B.1 Configuration Bits
	B.2 Description of MikroC USB Library Functions
	1 Hid_Enable (&readbuffer, &writebuffer)
	2 Hid_Read ()
	3 Hid_Write (&writebuffer, length)
	4 Hid_Disable ()
	5 Usb_Interrupt_Proc ()

	Appendix C
	Appendix D
	Appendix E
	References

