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ABSTRACT

This objective of this research is automatic detection and localization of
myocardial infarction (MI) using back propagation neural networks (BPNN)
classifier with features extracted from 12 lead ECG. Detection of MI aims to classify
normal vs. infarcted subjects and localization is the task of specifying the infarcted
region of the heart. The electrocardiogram (ECG) source used was the PTB database
available on Physiobank. Time domain features of each beat in the ECG signal such
as T wave amplitude, Q wave and ST level deviation, which are indicative of MI,
were extracted. For localization, lead-wise principal components analysis (PCA) was
done on the data extracted from ST-T region (0.4 seconds after the | point) and Q
wave region (0.06 seconds around the start of QRS complex) of each beat. The
resulting principal components were used as features for localization of seven types
of myocardial infarction which were divided into two spatially related classes with
class-1 comprising of Anterior, Antero-lateral and Antero-septal infarcts and class-2
comprising of Inferior, Infero-lateral, Infero-posterior and Infero-posterolateral
infarctions. Localization into these two classes through classification would indicate
the general region of the heart which has been infarcted. The feature dataset
extracted from 148 records was divided into disjoint training, cross validation and
testing data sets. For detection and localization separate neural network
architectures were optimized using minimum cross validation error criterion over
the cross validation data set after training. For detection, it was found that the
sensitivity and specificity of BPNN for beat classification was 97.5 % and 99.1%
respectively. For localization, PCA based features using back propagation neural
network classifier resulted in a maximum beat classification accuracy of 93.7%. The
proposed method due to its simplicity and high accuracy over the PTB database can

be very helpful in correct diagnosis of MI in a practical scenario.



CHAPTER 1
INTRODUCTION

In the recent years, there is an increase of death rate due to cardiac diseases,
early detection of such diseases is crucial because later diagnosis may not help in
any treatment. Increased computing power has given the opportunity for
implementing powerful diagnostic methods. Today, there are considerable
commercial interests in the classification of electrocardiogram (ECG) signals. The
overall research is aimed at developing a computerized system that categorizes ECG
signals. ECG is one of the oldest and most popular instrument based measures in
medical applications. Its most recent evolutionary step, to computer based systems,
has provided a high resolution ECG that has opened new ways of ECG analysis and

interpretation.
1.1 Research Objectives

The main purpose of the project is to develop a computer based offline ECG
expert system for the automatic detection and localization of one of the most
important heart diseases, that is, Myocardial Infarction (MI). The development of
such a system would greatly aid medical experts in interpreting the ECG and making
correct diagnostic decisions in case of MI by providing reliable feature extraction
from ECG (such as Q wave detection and ST level deviation etc) saving time and
effort of medical expert so that he/she can handle more number of MI patients
simultaneously. The system will also enable physicians, who are not cardiac experts,
to handle MI patients with ease and accurately. An experienced cardiologist can
easily diagnose various heart diseases just by looking at the ECG waveforms but in
some specific cases, sophisticated ECG analyzers can achieve a high degree of
accuracy than that of the cardiologist. The use of computerized analysis of easily

obtainable ECG waveforms can reduce the doctor’s workload up to great extent.



Some analyzers assist the doctor by producing a diagnosis, other provides a limited
number of parameters and by the help of those parameters the doctor can make his
own diagnosis. The automatic decision support system comes out to be very useful
in a country like Pakistan where the number of expert cardiologists is very less per

unit of population.
1.2 System Modules

The different modules that comprises the overall system is shown in the

figure 1.1 followed by a short description of each of them.

ECG  —» QRS dgtecn_on 5 Baseline 5 Iso-EIectrllc level
and Delineation removal detection —‘
Feature —p Classification
Extraction
Detection Localization

Figure 1.1 System Block Diagram

1.2.1 Signal Pre Processing

The raw ECG signal is taken from the PTB database and is pre processed. The
pre processing tasks in this work are QRS delineation, Baseline removal and iso

electric level detection as shown in the block diagram 1.1.



1.2.2 Feature Extraction

The pre processed signal is then used as input to feature extraction module
where different features extraction techniques are implemented to extract MI
describing features from ECG such as Q wave amplitude, ST level deviation and T

wave amplitude. Such features indicate the presence or absence of MI.
1.2.3 Classification

In classification, there are two tasks that are implemented, that is, Detection
of MI (It tells whether the subject is normal or abnormal) and Localization of MI (It

gives information about the location of infarction).
1.2.4 Organization of the Thesis

This document presents the detail description of the work done in this
project. The work description has been divided into different chapters/sections.
Chapter 1 gives an introduction to the project. Chapter 2 describes ECG basics and
gives an introduction to Myocardial Infarction, the heart disease on which we have
focused in this project. Chapter 3 contains an overview of the characteristics of the
PTB database used in this project plus ECG signal pre processing techniques.
Chapter 4 explains the procedures for ECG feature in relation to time domain
features such as ST level deviation etc and PCA based feature extraction where
chapter 5 describes the implemented methods for classification such as back
propagation neural networks (BPNN) in relation to Detection and Localization of ML
Chapter 6 has the details of classification results for detection and localization of MI
by different datasets and different features extraction methods and chapter 7

presents conclusion and future work.

In this work, some of the existing implemented methods have been used as it
is such as the ECG signal pre processing and QRS delineation, while some have been

developed such as feature extraction algorithms and classification methods.



CHAPTER 2
ECG BASICS AND MYOCARDIAL INFARCTION

In this chapter we describe the heart structure and Electrocardiogram (ECG)
formation. We give an overview of different components of ECG and describe what
is myocardial infarction (MI), and introduces different types of MI with related

changes in the ECG followed by a description of the detection and localization of MI.
2.1 The Heart and its function

The heart is the central structure of the cardiovascular system. The heart
contains fours chambers and one way valves, as shown in the figure 2.1. A wall or
septum divides the heart into left and right sides which are further partitioned into
an upper chamber atrium and lower chamber ventricle. The right side of the heart
receives the de-oxygenated blood which is pumped into lungs for getting oxygen
and leaving carbon dioxide. The left side receives the oxygenated blood which is

pumped to the whole body for oxygen distribution.

right 5 A
atfium -

right

ventncle left ventricle

Figure 2.1 Major parts of the Heart

The contraction of the heart muscles enables the blood to be pumped.

Myocardial cell can contract spontaneously under normal condition, these



contraction are triggered by the action potentials originating from the cells situated
in two areas of the heart- the Sino-Atrial (SA) and Atrio-ventricular (AV) nodes. The
SA node is the generally the site to trigger the action potential for heart-beat, but AV

node can take this role if for some reason the SA node fails.

2.1.1 Conduction System of the Heart

This section gives an overview of the different parts of electrical pulse conduction

system in the heart.
2.1.1.1 Sinoatrial Node (SA node)

The sinoatrial node (SA node) consists of a cluster of specialized cells that
have pacemaker activity (automaticity). These cells are responsible for initiating the
electrical impulse that stimulates the heart muscles to contract rhythmically. The SA
node is located high on the right atrium close to where the superior vena cava

enters the right atrium as shown in figure 2.2.

Pulmonary

aora Trunk

Pulmonary
Superior -7 veins
vena cava
__ Leftatrium
SA node Anteriosuperior
- left bundle branch
Right atrium — Left ventricle
AV node ___Posterior left
bundle branch
Inferior
venacava

Furkinje fibers

Right bundle branch
Right ventricle

Figure 2.2 A view of the heart showing different parts



2.1.1.2 Sinus rhythm

The SA rhythm is the normal pacemaker of the heart, firing at about 60-100
beats per minute. A heart controlled by the SA node is said to be in normal sinus
rhythm. The electrical impulse from the SA node spreads over the right and left atria
and causes atrial contraction. The impulses are also conducted to the atrioventicular
(AV) node. It takes about 0.03 seconds for the impulse to travel from the SA to AV

node.
2.1.1.2 The Atrioventicular Node

Atrioventicular node (AV node) is located on the interatrial septum. It
receives impulses from the SA node and conducts them to the bundle of His.
Conduction through the AV node is slow providing a deliberate delay that allows the
ventricles you fill up before the ventricles contract. The AV node provides the path

of least resistance for the impulse to proceed to the ventricles.
2.1.1.3 Bundle of His

The bundle of His is located in the proximal intraventicular septum. It
emerges from the AV node to begin the conduction of the impulse from the AV node
to the ventricles. The Bundle of His branches into the right, left anteriosuperior and

left posterioinferior bundle branches.

2.1.1.4 Bundle Branches & Purkinje Fibers

The bundle of His branches into the three bundle branches: the right, left
anteriosuperior and left postrioinferior bundle branches that run along the
interventicular septum. The bundles give rise to thin filaments known as Purkinje
fibers. These fibers distribute the impulse to the ventricular muscle. Collectively, the
bundle branches and purkinje network comprises the ventricular conduction
system. It takes about 0.03-0.04s for the impulse to travel from the bundle of His to

the ventricular muscle.



2.2 Electrocardiography

The various propagating action potentials within the heart produce a current
flow, which generates an electric field that can be detected in significantly
attenuated form at the body surface through a voltage measurement system. The
resulting measuring measurement, when taken with electrodes in standardized
locations, is known as the Electrocardiograph (ECG) which is in the range of +-2 MV.
Each component of the ECG is directly related to the spread of electrical currents
through specific regions of the heart (Fig. 2.3). Thus sufficient information is
available in these signals to enable diagnosis of a number of cardiac abnormalities.
The P wave is representative of atrial depolarization (cardiac stimulation), the QRS
complex represents ventricular depolarization and the T wave represents the return

of the ventricles to their resting state (re-polarization).

Atrial
Diepalarisation

Ventricular
Depolarisation Ventricle

Figure 2.3 ECG formation

The standard 12-lead ECG system consists of four limb electrodes and six
chest electrodes. These electrodes or leads view the electrical activity of the heart
from 12 different positions, 6 standard limb leads and 6 pericardial chest leads as
shown in the table 2.3. Each lead views the electrical activity from different angle
and monitors specific portions of the heart from the point of view of positive

electrode in that lead.



The ECG, over a single cardiac cycle, has a characteristic morphology as

shown in Figure 2.4 comprising a P wave, a QRS complex and a T wave.

Table 1.1 ECG 12 lead system

Standard Leads Limb Leads Chest Leads
Bipolar Leads Unipolar Leads Unipolar Leads
Lead | AVR vV1,v2,Vv3
Lead I AVL V4,V5,V6
Lead llI AVF

The normal ECG configurations are composed of waves, complexes,
segments, and intervals recorded as voltage (on a vertical axis) against time (on a
horizontal axis). A single waveform begins and ends at the baseline. When the
waveform continues past the baseline, it changes into another waveform. Two or
more waveforms together are called a complex. A flat, straight, or isoelectric line is
called a segment. A waveform, or complex, connected to a segment is called an
interval. All ECG tracings above the baseline are described as positive deflections.
Waveforms below the baseline are negative deflections. Subsequent sections

describe ECG waves and intervals in detail.

Single ECG beat taken from PTB databse
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Figure 2.4 ECG beat from PTB database showing different components such as P wave, QRS
complex and T wave



2.2.1 P Wave

The onset of depolarization in the heart is seen in SA node, an area at the
upper right border of the heart consisting of pace maker cells. A wave of
depolarization travels from SA node, downward, leftward and posteriorly, trough
both atria, depolarizing each cell in its turn. This can be seen as the P wave in the
ECG (See figure 2.5 for p wave formation). The magnitude of the P (shown in figure

2.4.) wave is normally low (50-100uV) with about 100 millisecond duration.

Std Lead |1

Left atrium

54 Wode-

Eight atrium

AT Fode

olay

[RRIE

Bundle of His 4 1eft t 1
e ventricle

Bight ventricle- - \ -Left bondle bramch

1'-.
\
Fight bundle branch S

Tentricular free wall

Septum

Figure 2.5 P wave formation in ECG waveform

2.2.2 The QRS complex

The QRS complex corresponds to the period of ventricular contraction or
depolarization. It is the result of ventricular depolarization through the Bundle
Branches and Parkinje fiber. In this portion of the beat we can see three different
waves i.e. Q wave, R wave and S wave as shown in figure 2.6. QRS can be measured
from the beginning of the first wave in the QRS (start of Q wave) to where the last
wave in the QRS returns to the baseline (end of S wave). Normal measurement for

QRS is 60ms-100m:s.
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QRS complex
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Figure 2.6 Q, R and S waves forming QRS complex
2.2.3 The ST segment

The ST segment represents the time between the ventricular depolarization and the
re-polarization. The ST segment begins at the end of the QRS complex and ends at
the beginning of the T wave. Normally, the ST segment measures 0.12 second or

less.

2.2.4 The T wave

The T wave results from the re-polarization of the ventricles and is of a longer
duration than the QRS complex because the ventricular re-polarization happens
more slowly than depolarization. Normally, the T wave has a positive deflection of
about 0.5mv, although it may have a negative deflection. The duration of the T wave

normally measures 0.20 second or less. It is shown in the figure 2.7.
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T wave and PQ interval
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Figure 2.7 T wave and PQ interval

2.2.5 The QT interval

The QT interval begins at the onset of the Q wave (QRS start point) and ends
at the endpoint of the T wave, representing the duration of the ventricular

depolarization/repolarisation cycle.
2.3 Myocardial Infarction (MI)

Heart attack (also known as a myocardial infarction) is caused by death of the
heart muscle due to sudden blockage of a coronary artery by a blood clot. Coronary
arteries are blood vessels that supply the heart muscle with blood and oxygen.
Blockage of a coronary artery deprives the heart muscle of blood and oxygen, causing
injury to the heart muscle. Injury to the heart muscle causes chest pain and chest
pressure sensation. If blood flow is not restored to the heart muscle within 20 to 40
minutes, irreversible death of the heart muscle will begin to occur. Muscle continues
to die for six to eight hours at which time the heart attack usually is "complete.” The

left ventricle is the thickest chamber of the heart; so if the coronary arteries are
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narrowed, the left ventricle (which uses the greatest blood supply) is the first to suffer
from an obstructed coronary artery. When we describe infarcts by location, we are
speaking of an area of the left ventricle. Coronary arteries to the left ventricle usually
send smaller branches to other regions of the heart, so an infarction of the left
ventricle can include a small portion of another chamber. Besides cardiac
arrhythmias, myocardial infarction (MI) represents the most important subject in
electrocardiography due to its severity and prevalence. MI can be recognized by
typical ST level deviation, significant Q wave and T wave inversion. Approximately
70% of MIs are recognizable in the ECG, based on well-defined criteria.
Approximately 30% of acute and previous Mls are not recognizable in the ECG. The
reasons are: 1. Small infarctions; 2. Infarctions associated with left bundle-branch
block (LBBB); 3. Multiple infarctions, and one infarction pattern masks the other and
last 4. Electrocardiography is an indirect method. It is therefore astonishing that so
many MIs are recognized in the ECG, in many cases with reliable determination of

localization.

2.3.1 ST, Q, and T Vectors in Myocardial Infarction

The infarction pattern at any stage appears in the directly detecting leads,
this fact greatly simplifies the diagnosis of MI. The injury (lesion) ST vector points to

the region of infarction, resulting in ST elevation as shown in figure 2.8 (a).
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Figure 2.8 ST, QRS, and T vectors in myocardial infarction. a. ST injury vector. b. QRS vector in necrosis.
c. T ischemia vector

The necrosis QRS vector points to the opposite direction of the infarcted

area, producing a pathologic Q wave or QS wave (Figure 2.8b). The ischemia vector

also points away from the infarction zone, resulting in negative and symmetric T

waves (Figure 2.8c). The two stages of MI evolution according to the international

nomenclature are:
= Acute stage: ST elevation with or without pathologic Q waves

= Subacute and old stage: Pathologic Q waves, isoelectric ST segment
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The ST elevation with or without pathologic Q waves corresponds to AMI, and
pathologic Q waves with isoelectric ST segment (with or without negative T waves)

to subacute MI and at the same time to an old MI.

As for as MI localization is concerned, the infarction pattern indicate itself in
different leads of ECG. The localization can be easily determined from the three
dimensional exploration of the cardiac vectors produced by 12 standard ECG leads.
The relationship between the localization of infarction and the exploring leads is
described in subsequent sections together with the most frequent localizations of

coronary artery obstruction, for each infarction localization.
2.3.2 Anteroseptal Infarction

As leads V2 and V3 are placed over the interventricular septum, and V4 over
the apex, anteroseptal infarction (Figure 2.9) will produce the typical pattern in
these leads (also in V1), according to the infarction stage Leads V2, V3 and also V1

shows these changes (figure 2.10).

Figure 2.9 Site of anteroseptal Ml
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(a) ST elevated in V1
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(b) Lead V2 from a patient having AS MI

Figure 2.10 ST elevations in anteroseptal infarction

2.3.3 Lateral Infarction

This infarction is rare in its isolated form (figure 2.11). Leads V5 and V6
directly explore the lateral wall; the typical pattern in these leads is seen. Depending
on the infarction size, the typical signs might also be present in leads I and aVL. In

high lateral infarction, the best directly exploring lead is aVL.
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Figure 2.11 Site of lateral infarction
2.3.4 Anterolateral Infarction

Anterolateral infarction includes infarction of the septum, the apex, and lateral
portions of the left ventricle (figure 2.12). The infarction pattern can be seen in the

leads (V1) V2 to V4, in lead V5, and often V6.
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Figure 2.12 Site of Anerolateral Ml
In this infarction type, the pattern is also detected by leads I and aVL (in aVL
if the high lateral portion of the left ventricle is involved). ECGs 2.13 a-c are

examples of anterolateral MI.
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ST elevation in V1
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(b) ST elevation and T wave inversion in Lead V3 (PTB database)
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(c) T wave inversion in Lead V4 (PTB database)

Figure 2.13 Leads V1, V3 and V4 From anterolateral Ml subject (PTB database)
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2.3.5 Inferior Infarction

The pattern of inferior infarction is detected in leads II, IIl and aVF (figure 2.14). In
practice, the alterations are best seen in leads aVF and III, less distinctly in lead II.
However, a q wave also in lead II favors the diagnosis of inferior infarction. ECGs

taken from PTB database shows some of these changes (figure 2.15).

Figure 2.14 Site of Inferior infarction
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(a) Lead Il (Inferior MI from PTB patient #078)
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ST elevation and significant Q wave
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(b) Lead Il (Inferior MI from PTB patient #026)
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(d) Lead lll (Inferior MI from PTB patient #026)

Figure 2.14 a-d Electrocardiogram (ECG) obtained from PTB database with inferior myocardial infarction.
Pathologic Q waves, ST elevation, and T wave inversion in leads Il, aVF, and Ill.



20

2.3.6 Posterior Infarction

For one particular reason, this infarction pattern is difficult to understand.
According to the definition of pathologic Q waves, and referring only to the 12
standard ECG leads, the pattern is not a Q wave infarction (figure 2.16). We only see
the mirror image of the original pattern in some of these leads. The additional
posterior leads V7, V8, and V9 provide the direct infarction pattern. The mirror
image is seen in the opposite leads, the anterior (anteroseptal) leads V2 and V3, and
sometimes V1, consisting of an ST depression instead of an ST elevation and/or a

great and broad R wave instead of a broad Q wave, depending on infarction stage.

Figure 2.16 Posterior Infarction

In absence of pathologic Q waves and/or ST elevation in the 12 standard
leads, the possibility of infarction is often not considered. Thus, in the presence of
the following alterations in leads V1 to V3, the diagnosis of posterior infarction

should always be confirmed or excluded with the help of leads V7 to V9:
1. Single R wave and/or an Rs complex, with an R duration of = 0.04 s
2.Isolated ST depression
3. Combination of 1 and 2

ECGs in figure 2.17 show some changes. Abnormal R wave and ST deviation in leads

V1 and V3.
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Large R wave in V1
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(a) Lead V1 ECG from PTB patient#85 with posterior Ml
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(b) Lead V3 ECG from PTB patient#85 with posterior Ml

Figure 2.17 a-b Leads V1 and V2 ECGs from PTB

2.3.7 Anterior Infarction

In this case the site of infarction is the anterior wall of the left ventricle (Anterior left
coronary artery). Q waves in chest leads V1, V2, V3, or V4 signify an anterior
infarction. ECGs taken from PTB database in figure 2.18, shows an anterior
infarction in the specified leads with ST elevation, T wave inversion and abnormal Q

wave.
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Figure 2.18 ECGs Showing ST level elevated, T wave negative in anterior infarct
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CHAPTER 3
ECG SIGNAL PRE PROCESSING

In this project the ECG source used, is the PTB database available on
Physiobank [1]. The PTB database contains significant number of subjects with
myocardial infarction on which we applied the techniques to get the simulated
results. This section gives an overview of PTB database and describes in detail, the

pre processing techniques for ECG that we applied.

3.1 The PTB database

PTB diagnostic ECG database is available free on the Physiobank, a good
resource for obtaining biomedical signals. PTB Diagnostic ECG database provides
datasets of infracted patients as well as healthy subjects. The PTB database contains
549 records collected from 294 subjects. Each subject is represented by at minimum
one and maximum up to five records. Out of 294 subjects, the number of subjects
that have been categorized as MI patients is 148. In the database the header files
contain the clinical summary of the patient and .dat files contain the patient’s actual

ECG data. The Summary of the diagnostic classes of the subjects is given below.

Table 3.1 Diagnostic classes of the subjects in PTB database

S.No Diagnostic class Number of subjects

1. Myocardial infarction 148

2. Heart failure 18

3. Bundle branch block 15

4. Dysrhythmia 14

5. Hypertrophy 7

6. Valvular heart disease 6

7. Myocarditis 4

8. Miscellaneous 5

9. Healthy controls 54
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Within each record there are 15 leads/channels and each ECG signal contains

different number of beats recording across the patients. A summary of the total

number of beats in each type is given below.

Table 3.2 Number of beats of infracted and healthy subjects calculated from PTB

S No. Type Sub Type Number of beats
1. Healthy Normal 9491
control
2 Infarction Anterior 7466
3 Infarction Antero Septal 11700
4 Infarction Antero lateral 6913
5 Infarction Inferior 11591
6 Infarction Posterior 467
7 Infarction Lateral 466
8 Infarction Postero Lateral 982
9 Infarction Infero posterior 356
10 Infarction Infero Lateral 8345
11 Infarction Infero Postero 2634
Lateral

The Table 2.2 shows that sufficient numbers of training and testing

beats/examples are available for each type. In case of posterior and lateral, the

numbers of beats are less as compared to others because there is one subject each in

these types and this presents a difficulty in training the classifier for separating

these types especially

in case of localization. Each record

includes 15

simultaneously measured signals: the conventional 12 leads (j, ii, iii, avr, avl, avf, v1,

v2, v3, v4, v5, v6) together with the 3 Frank lead ECGs (vx, vy, vz). As for as

myocardial infarction is concerned we just need the 12 leads data/ECG because the

myocardial infarction is reflected in these 12 leads ECG [10].



3.2 ECG Signal Pre Processing and QRS Delineation
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The raw ECG from the PTB database is then pre processed. The pre

processing stages are shown in the figure 3.1 i.e. QRS detection and delineation,

Baseline removal, and Iso electric level detection. Each of these techniques is

described in detail in subsequent sections.
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Figure 3.1 ECG segmentation and pre processing steps block diagram

3.2.1 QRS Detection and Delineation

At pre processing stage QRS detection and delineation is performed first,

which has some major objectives such as determining the QRS start point, the QRS

end point and the QRS feducial point.

We need these points to use them as

reference when doing baseline removal and further signal segmentation in feature

extraction process.
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QRS detection and delineation was done using an already implemented
technique based on discrete wavelet transform (DWT) [11]. The algorithm keeps
track of the signal derivative information (zero crossing and threshold) to
determine a wave’s start, peak point and end point as shown in the figure 3.2. Due to

high accuracy of this method, it was used in this work.
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Figure 3.2 QRS delineation procedure based on differentiation and thresholding

The figure 2.3 shows the QRS delineation points generated by the adopted
method for each beat when applied on ECG signal from PTB database.

QRS delineation
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Figure 3.3 QRS delineation locating onset, offset and feducial point
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3.2.2 Baseline Removal

Baseline wander is an extraneous, low-frequency artifact in the ECG (Figure
3.4a) which may interfere with the signal analysis, and makes the clinical
interpretation inaccurate and misleading. When the baseline wander is there in the
signal, the iso-electric line is not well defined and hence accurate measurements of
the parameters which are considered relative to the iso-electric level can’t be made.
Baseline wander results from noise sources such as perspiration, respiration, body
movements, and poor electrode contact. The magnitude of the undesired wander
may exceed the amplitude of the QRS complex by several times [2]. Its spectral
content is usually confined to a frequency band below 1 Hz, but it may contain

higher frequencies as well.
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Figure 3.4 Cubic Spline Fitting for Baseline Removal. ECG with baseline (a) Baseline removed
ECG (b)
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A number of different techniques have been implemented for baseline
wander removal [3] and [5]. We have used the cubic Spline based technique for
baseline removal [3]. This method takes the ECG signal along with QRS delineation
points such as QRS onset as inputs. This baseline removal method finds the knots
(i.e. the flattest point in the PQ region) as the reference point and fits a third order
cubic spline polynomial on those knots to obtain the baseline estimate which is then
subtracted from ECG signal to get baseline removed signal. Figure 3.4 shows the ECG
from PTB database with baseline (a) and with baseline removal (b). The baseline
shown in figure 3.4 b presents a linear behavior but the method works also for the

signals which show complex trend in baseline.
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Figure 3.5 Complex baseline pattern (a) Baseline removal (b)
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3.2.3 Iso electric level detection

The region after the end of the P wave and before the start of the QRS
complex is known as the PQ region and it can be used to locate the iso electric level.
The mean value of the flattest region in the PQ interval was considered as the iso
electric level. The iso electric level detection is required because the ECG amplitude

at different positions in the beat is measured relative to the iso electric level.

The procedure that was applied, searches the flattest region (where the
absolute value of the slope is minimum) about 60 millisecond backward from the
start of the QRS complex [6]. The procedure divides the search space into small
windows and the line in each window is approximated with a first order polynomial
then the slope of the line is calculated and the window with minimum slope (the
window with slope close to zero) is selected to be the flattest region. The mean
value of the selected window is taken as the iso electric level. In the figure 3.5 small
dots show the iso electric level points that were detected by the algorithm. Time
domain features as described in the next section are extracted using iso electric
level points as a reference point in each beat i.e. measurements such T wave
amplitude, Q wave amplitude and ST level elevation and depression are taken
relative to iso electric level. The value of the signal at the iso electric level is
calculated and then subtracted from the corresponding detection point (T or Q or

ST) value in that beat.
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Figure 3.6 ECG Iso electric level detection (Source: PTB database)
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CHAPTER 4
ECG FEATURE EXTRACTION

According to MI experts [11], the presence or absence of myocardial
infarction is characterized by specific waves or segments in the ECG beats as
discussed in detail in chapter 2. The main indicators are Q wave, T wave and ST level
elevation or depression [11]. So we can either use the ECG amplitudes at these
points or take the regions of the beat where these waves are most probably located.
This led us to two approaches i) Time domain features and ii) Principal component

analysis (PCA) as shown in the block diagram 4.1.

Feature Extraction

PCA Based .
. < p Feature selection
Technique
i \ 4 \ 4 \ 4
ST-T Region Q wave region ST level SIS T wave
9 9 depth amplitude
! !

Principal 36 Dimensional
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Figure 4.1 Feature extraction approaches, time domain features and PCA based features

4.1 Time Domain Features

Electrocardiographically two types of myocardial infarction exist [11] i.e. Q
wave infarction which is diagnosed by the presence of Q waves and Non Q wave

infarction, which is diagnosed in the presence of ST depression and T wave
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abnormalities. The ECG has been used to localize the site of ischemia and infarction.
Some leads depict certain areas; the location of the infarct can be detected
accurately from analysis of the 12-lead ECG [11]. Therefore the time domain feature

that has been used are Q wave amplitude, ST level deviation and T wave amplitude.
4.1.1 ST Deviation Measurement

ST segment is from the end of the QRS complex to the start of the T wave. ST
elevation is usually measured 60 or 80ms after the ] point depending on heart rate.
We extract the ST segment using QRS end point and T wave start point or we can
take directly the elevation point 80ms [7] after the ] point which in accordance with
the resample frequency 250 comes out to be 15 -17 samples after the | point.

Figures 4.2 shows ST level detection points in each beat.
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Figure 4.2 ST level detection points

After locating the ST level point, ST deviation is measure with respect to the
iso electric level. The value of ECG signal at iso electric level is subtracted from the
ECG value at the ST locating point to get the ST level measure for each beat; this

becomes our first time domain feature.
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4.1.2 Q Wave Detection and Amplitude Measure

The DWT based QRS detector described in chapter2 is was used for the
detection of Q wave also. The procedure returns the indices where Q wave is
present in the beat, and return 0 if Q wave is absent from the beat. By using the Q
wave detection indices, Q wave amplitude is measure easily by taking the value of
ECG at the Q wave detection point minus the ECG value at iso electric level for each
beat. Figure 4.3 shows Q wave detection points as dots generated by the QWT based
detector applied on ECG signal from PTB database.
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Figure 4.3 Q wave detection points shown as dots

4.1.3 T Wave Detection and Amplitude Measure

To determine T wave amplitude, a T wave delineator which has been
implemented using discrete wavelet transform [3] has been used. The procedure
finds the T wave onset and offset and gives the T wave start and end indices in ECG
for each beat. Using onset and offset information, the T wave amplitude is

calculated. T wave amplitude can be calculated by finding extreme value (minimum



33

in case of negative or inverted T wave and maximum in case of positive T wave) in
the T wave start and T wave end region or alternately the point where the
derivative of the curve (slope) is zero can be considered as T wave peak. The ECG in

figure 4.4 shows the locating of T wave peak points and T wave amplitudes.

T wavedetection and amplitude extraction
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Figure 4.4 T wave detection and amplitude extraction

The above mentioned three time domain features i.e. T wave amplitude, Q
wave amplitude and ST deviation measure; were extracted for each beat and
combined for 12-leads forming a 36 dimensional feature vector. These features

were used for the MI detection and some localizations purpose.

4.2 Principal Component Analysis

Principal component analysis (PCA) [17] is a mathematical procedure that
transforms a number of possibly correlated variables into a smaller number of
uncorrelated variables called principal components. It is a dimensionality reduction

technique and it finds the components in which the direction of variance is
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maximized. PCA was used to generate the second set of features in this research as

described in the following sections.

4.2.1 Introduction

Before going to describe PCA we go through some statistical concepts that are

necessary for understanding PCA.

4.2.1.1 Standard Deviation and mean

Given a data set or sample population the mean is the sum divided by the number

of data point’s i.e. for a data set X the mean is calculated to be:
X=)1Xi/n
The mean doesn’t tell us a lot about the data except for a sort of middle point. For

example, these two data sets have exactly the same mean, but are obviously quite
different:

[20 08 12] and [11 12 8 9]

The difference between the datasets is that the spread of the data is different. The
Standard Deviation (SD) of a data set is a measure of how spread out the data is. The way
to calculate it is to compute the squares of the distance from each data point to the mean

of the set, add them all up, divide by n-1, and take the positive square root. As a formula

/Z?(Xi—)?)z
S: —_—
n—1

Where s stands for standard deviation. When calculating the standard deviation for

the standard deviation is:

sample population the divide by n-1 is used while when calculate the standard deviation
of whole dataset divide by n is used.
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4.2.1.2 Variance

Variance is another measure of the spread of data in a data set , almost identical to the

standard deviation. The formula is:

2 Z?(Xi—)?)z
n—1

S

This is simply the standard deviation squared. Both these measurements are measures of
the spread of the data. Standard deviation is the most common measure, but variance is

also used.

4.2.1.3 Covariance

Many data sets have more than one dimension, and the aim of the statistical
analysis of these data sets is usually to see if there is any relationship between the
dimensions. Covariance means how the change in one variable affects the other or how
the variables vary relative to each other. It is always measured between two dimensions.
If we have three dimensional data (X, y, z) the we can measure the covariance between x
and y dimensions, x and z dimensions and so on. The formula for calculating covariance
comes from that of variance where we replace one dimension by two different
dimensions. The formula for variance in expanded form is:

pary = YHXi-X)(Xi-X)

n-1
Now when we have two dimensions namely x and y for calculating covariance between x
and y we can write the formula:

YHXi-X)(Yi-Y)
n-—1

covar(X,Y) =

Since multiplication is commutative, it implies that covar(x,y) is same as covar(y,x).

4.2.1.4 The covariance Matrix

Covariance is always measured between 2 dimensions. If we have a data set with

more than 2 dimensions, there is more than one covariance measurement that can be



36
calculated. For a three dimensional data set (x, y, z) we can calculate covar (X, y),
covar(x, z), covar(y, z).

All the covariance values across the dimensions are calculated and put in a matrix
which is called covariance matrix. For N dimensional dataset the covariance matrix is an
NxN matrix. On the main diagonal of the matrix the values are simple variances and
since covar(x,y) is same as covar(y,x) so the matrix is symmetric along the main

diagonal. For example for a three dimensional dataset (X, y, z) the covariance matrix is :

covar(x,x) covar(x,y) covar(x,z)
C = covar(y,x) covar(y,y) covar(y,z)
covar(z,x) covar(z,y) covar(z, z)

So we can see that at the main diagonal, the values are simple variances and the matrix is

symmetric along the main diagonal.

4.2.1.5 Eigenvectors and Eigenvalues

Let A be an nxn matrix. The eigenvector of A is a vector v such that:

Av = v

Av=hv

>

Figure 4.5 Eigenvector and eigenvalue

Where A is called the corresponding eigenvalue. The vector's length is simply scaled by
variable A. Equation (1) is further manipulated to find the eigenvalues and eigenvectors

of a given matrix A.
Av = v

A—=-ADv=0
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(A—ADv =0

Where 1 is the identity matrix. So (A-Al) is just a new matrix. If (A-Al) v=0 for some v£0
then the matrix (A-Al) is not invertible and hence:

det [A-AI] =0

This determinant turns out to be a polynomial expression and we can solve it for

calculating the eigenvalue A. Given an eigenvalue Ai the associated eigenvectors are

given by:
Av = ;v
_Alvl_
U1 A0,
A2 =
v, :
A, v,

The set of n equations with n unknowns, simply solve the n equations to find the n
eigenvectors. Eigenvectors can only be found for square matrices. And, not every square
matrix has eigenvectors, and a given NxN matrix, that does have eigenvectors there are N
of them for example a 3x3 matrix have three eigenvectors. Another property of
eigenvectors is that if even we scale the matrix by some number before multiplying it,
we’ll get the same eigenvalue/multiple as a result because scaling a vector only changes
its length not the direction. Lastly all the eigenvectors of a matrix are perpendicular/at
right angles to each other, also called orthogonal. This is important because it means that

you can express the data in terms of these perpendicular eigenvectors.

4.2.2 Computation of Principal Components

In this procedure PCA is applied on selected regions such ST-T region and Q
wave region; of the baseline and iso electric level removed ECG signal. The ST-T
region that was selected comprises of 100 samples (0.5 seconds duration) and Q
wave region that was selected contains 15 samples (0.06 seconds duration) for each

beat in each lead across the database (figure 4.5).
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Segments of ECG beats used with PCA
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Figure 4.5 Regions of the beat that were selected for PCA to be applied on.
For each lead | two separate matrices S, and QI were formed corresponding

to ST-T region and Q wave region by collecting these regions from all the beats and

then selecting 3000 beat’s regions at random in both cases as follows:

S, =[stt;..stt| -"Sttfooo]aooxsooO)

Q, = [qll"'qlk"'ql?)ooo](15><3000)

Where Stt:( is the ST-T region corresponding to kt" beat in lead I; similarly q:‘ is the

Q wave region corresponding to k" beat in lead I After combining, data

normalization was performed by normalizing each row m of S, as follows:

Sm_ m
Slm: | mlLIS|

(TSI

m m
Where H s isthe mean of m* row of S, and O s, Isthe standard deviation of

mt row of S, . Similarly Q, was normalized as follows:



The corresponding Eigen vectors matrices for each of S

generated by PCA as:

Q/

Ve [V Vi vy ]

VP =[]

o)

m

Q|

le _ ll'l(g:

100xs)

15><q:,

and

Q,
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were

Where s.'n and q'n are the number of principal components for ST-T and Q region

corresponding to lead | respectively and v * is the k' Eigen vector corresponding

to lead 1 with n. and ¢ are chosen such that 98% variance of the data is captured.

Table 4.1 contains a summary of the above parameters for each lead. As shown in

the table 4.1 the final feature vector generated by PCA is 117 dimensional much less

than 1380 dimensional vector before applying PCA.

Table 4.1 Computation of principal components for each lead

ECG lead

st

o

st

q'

y

100

15

12

17

100

15

14

100

15

14

AVI

100

15

11

16

AVF

100

15

13

18

AVR

100

15

14

V1

100

15

10

14

V2

100

15

14
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V3 100 15 8 5 14
V4 100 15 9 5 14
V5 100 15 11 4 15
V6 100 15 10 4 14
For 12 leads 1200 180 177

4.2.3 Dimensionality Reduction

After calculating PCA models (as described in previous section), dimensionality
reduction of the training and testing data extracted from ST-T and Q wave region

was made as follows:
stt') = (V,°)" stt|

ql: = (qu)qui

Where Stt' and '] are the reduced representation of extracted features Stt, and

qf corresponding to lead 1. These reduced feature sets were then combined to have

a feature set for each lead | in each patient’s record.
i
stt’,
q i
I
Combining the 12 leads features forms final input feature matrix for each patient

who can be either used for training or testing the classifier.
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CHAPTER 5
CLASSIFICATION

Classification is the task of categorizing a given pattern into one of several
types/classes. In this work the beat vise classification is carried out on the features
extracted (as described in previous chapter) for both detection and localization of

MI separately.
5.1 Introduction

The classification task is divided into Detection and Localization of Myocardial
Infarction. The number of classes selection is different for detection and localization.
In the detection process we treat healthy control/non infarction as one class and all
other infracted types as the other class. So the detection is basically a two class
classification i.e. classifying infracted subjects vs. non infracted subjects. Detection is
performed separately on features from time domain measures as well as feature
extracted using PCA approach. For localization we have ten types of myocardial
infarction each as different class. Different combinations of the classes are taken as
different datasets and performed classification (described later). Back propagation
neural networks (BPNN) is used currently in this work as classifier since it has been
successfully applied by the researchers for such disease classification tasks [12], [13]
and [16]. The complete description BPNN application as classifier is followed in

subsequent sections.
5.2 Literature Survey

Several different techniques exists for ECG feature and classification such as
back propagation neural nets (BPNN), fuzzy logic based, and hybrid techniques such
as neuro fuzzy see [12], [13], [14], [15] and [16]. Every technique has its own

advantages and disadvantages but the classifier usage is dependent on the nature of
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the classification problem and the nature of input feature matrix. The input feature
matrix with more discrimination can be classified easily with reasonable accuracy by
most of the classifiers. Some classifiers are biased towards the class with more
training examples in the input matrix, so such classifier can perform better only if
equal number of training examples is available but it’s not usually the case. In disease
classification, back propagation neural networks have been widely used. Several
researchers have applied BPNN for the detection of MI on their feature sets [12], [14]
and [16] and hybrid approach (NN+Fuzzy) for localization [13]. The summary of
literature results for detection and localization of MI is given in the table 5.1. See the

reference section for authors and paper title.

Reference# Results

12 Sensitivity for detecting Anterior MI=79% , Specificity=97%
with time domain QRS measure as features and BPNN as
classifier

13 The sensitivity and specificity are 84.6% and 90.0% for the

testing set using neuro fuzzy approach

16 The sensitivity of the neural networks was 95% higher than
the cardiologist at a specificity of 86.3%

5.3 Detection of MI

In this study myocardial infarction detection was treated as two class
classification with infracted and non infracted classes. The input data obtained from
feature extraction process was classified using BPNN for detection. Half of the
patient’s data was used for testing and remaining was used for training and cross
validation. The datasets for training, cross validation and testing were kept disjoint.
Neural net architecture was optimized using cross validation dataset. The optimum
parameters were found to be TrainRP as learning algorithm, two hidden layers with
20 neurons in the first hidden layer and 5 neurons in the second hidden layer. The
learning algorithm “TrainRP” in matlab neural net toolbox is memory efficient and

can handle large number of training examples such as in this case.
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5.4 Localization of Ml

Localization was done using both PCA based features as well as time domain
features separately with back propagation neural network as classifier. For checking
the maximum classification accuracy we used the extracted features of different types
of MI combining in six data sets. In each data set, MI types were put in different
classes as shown in the table 5.2. The table includes the types of MI that were used
in each data set along with feature extraction method. Each data set was further
divided into training, cross validation and testing data for classification with BPNN.
The datasets for training, cross validation and testing were kept disjoint. Neural
net architecture was optimized using cross validation dataset. The training
parameters of BPNN have to be tuned to find a more generalized network therefore
training in each case was performed multiple times and cross validation errors were
noted for each trained network. The network with minimum cross validation error
was used for testing. The BPNN training architectures, cross validation and testing
are described in next result’s sections.

Table 5.4 Datasets used for Ml Localization. The combinations are chosen such that relevant types of Ml
fall within the same class.

Dataset | Features extraction | MI Types included in the dataset

method

ANTERIOR (class1)

1. PCA INFERIOR (classz)

LATERAL (classs)

POSTERIOR (class4)

ANTERIOR, ANTERO SEPTAL, ANTERO LATERAL (class1)

2. PCA INFERIOR , INFERO LATERAL , INFERO POSTERIOR

(classz)
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ANTERIOR, ANTERO SEPTAL, ANTERO LATERAL (class1)
3. PCA INFERIOR , INFERO LATERAL , INFERO POSTERIOR ,
INFERO-POSTERO-LATERAL (classz)
ANTERIOR (class1)
4, PCA ANTERO LATERAL (class2)
ANTERO SEPTAL (class3)
ANTERIOR , ANTERO SEPTAL, ANTERO LATERAL (class1)
5. Time domain features INFERIOR , INFERO LATERAL , INFERO POSTERIOR ,
INFERO-POSTERO-LATERAL (classz)
6. Time domain features ANTERIOR (class1)
INFERIOR (classz)
LATERAL (classs)
POSTERIOR (classs)

5.5 Classification Results

This section describes the results for detection and localization of MI. The

classifier performance was measured in terms of sensitivity, specificity and accuracy.

Using the testing output of the NN classifier a confusion matrix was formed, then

using confusion matrix these performance parameters were calculated. The format

of confusion matrix that was used is given in the table 5.3.

Table 5.3 Format of confusion matrix

Original/Predicted

Infarcted Non infarcted

Infarcted

True positives (Tp) False negatives(Fn)

Non infarcted

False positives (Fp) | True negatives(Tn)
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Sensitivity (SE) is calculated as follows:

SE(%)=%X100

P N

Where TP, TN, FP, and FN represent the number of true positives, true negatives,
false positives and false negatives respectively. Specificity (SP) is calculated by the

equation:

SP(%)= — %100
T +F

N P

The classification accuracy can be determined by dividing the sum of true

measures by the sum of all measures as follows:

T, +T,
T+ +T +FK

x100

ACC(%) =

5.5.1 MI Detection results using PCA based features

Several different neural net architectures were applied on the training data
to get the optimized trained net for classification of testing data. A separate cross
validation dataset was used for cross validation and the corresponding cross
validation errors were noted against each architecture. The details are shown by the

graph 5.1 and architecture specs are given in the table below (table 5.4).
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Table 5.4 BPNN architectures used for training

S.No Hidden Learning | Learning | Goal CVv
Neurons algorithm rate error
combinations
1 [20 10] TrainRP 0.3 0.01 | 0.2674
2 [30 20] TrainRP 0.1 0.01 | 0.2179
3 [20 5] TrainRP 0.5 0.01 | 0.1342
4 [30 15] TrainRP 0.3 0.01 | 0.1881
5 [105] TrainRP 0.5 0.01 | 0.2765
6 [30 20] TrainRP 0.3 0.01 | 0.2074
7 [50 25] TrainRP 0.3 0.01 | 0.1820
NN archetecture vs. Cv error
0.3
0.25
0.2
S
& 0.15
>
(S
0.1
0.05
0
1 2 3 4 5 6 7
Archetecture number

Figure 5.1 Graph showing the cross validation error variation of NN architecture

The confusion matrix given below (table 5.5) presents a summary of the
classification results on total of 15686 infarcted type beats and 1610 non infracted
type beats. It shows the number of true positives, true negatives and false measures

also. The sensitivity, specificity and accuracy have been also calculated.
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Table 5.5 MI detection results on PCA

Original/Predicted class Infarcted class Non Infarcted class
Infarcted class 14595 1091
Non infracted class 407 1203
Specificity (%) 74.7
Sensitivity (%) 93.04
Accuracy (%) 91.34

5.5.2 MI Detection results using Time Domain Features

In this section, the results obtained by using the time domain features extracted are
presented. All the infracted types were placed in class1 and normal were
considered as class2. So effectively the detection became a two class  classification
namely infracted class and non infracted class. In training process several
different neural net architectures were applied on the training data to get the
optimized trained net for classification of testing data. Cross validation errors
were noted against each architecture. The Cross validation error details are shown

by the graph 5.2 and architecture specs are given in the table below (table 5.6).

Table 5.6 BPNN architectures applied

S.No | Hidden Neurons | Learning algorithm | Learning rate | Goal

1. | [5030] TrainRP 0.3 0.01
2 [1510] TrainRP 0.3 0.01
3 [20 5] TrainRP 03 0.01
4 [60 40] TrainRP 0.3 0.01

5 [50 25] TrainRP 0.9 0.01
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NN archetecture vs. CV error
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Figure 5.2 Bar graph showing least CV error

In this case the architecture #5 with two hidden layers and [50 25] hidden
layer neuron combination has the least cross validation error as compared to other

neural nets that were trained, and has been used to classify the testing data.
5.5.2.1 Results

The confusion matrix given below presents a summary of the classification
results. It shows the number of true positives, true negatives and false measures

also. The sensitivity, specificity and accuracy have been also calculated.
Number infracted beats used for testing: 10580

Number non infracted beats used for testing: 1840

Table 5.7 Detection results using time domain features

Original/Predicted class Infracted Non Infarcted
Infarcted 10316 264

Non Infarcted 16 1824
Sensitivity (%) 97.5

Specificity (%) 99.1

Accuracy (%) 97.75
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5.5.2.2 Discussion

The confusion matrix shows that the detection results using time domain
features are better as compared to that on PCA. Time domain feature have better
discrimination between infracted and non infracted classes. The comparison of

results is shown in the figure 5.3.

Results comparison

B Results on time domain features H Results on PCA

o

Sensitivity Specificity Accuracy

Figure 5.3 Results comparison, Time domain features vs. PCA based for Ml detection

5.5.3 MI Localization results using PCA based features

For MI localization purpose, the features extracted from PTB database for
each type of MI, were divided into four datasets as mentioned in the table 5.4 above.
For each data set, classification was performed separately and results were noted.
Several different neural net architectures were applied on the training data to get
the optimized trained net for classification of testing data. A separate cross
validation dataset was used for cross validation and the corresponding CV errors
were noted against each architecture. Some of the parameters remain the same like

learning algorithm, number of epochs and goal. Different combinations of the
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number of hidden layer neurons were tried. The minimum cross validation error

network was used for testing.
5.5.3.1 Results on Dataset 1

This dataset contains four different types of MI, that is, anterior, inferior,
lateral and posterior infarct as four classes and were classified using BPNN as
classifier. The BPNN architecture and corresponding CV error are given in the table

5.8. The architecture#4 has the least CV error and was used for testing.

Table 5.8 Trained NN architectures and CV errors

S.No | Hidden Neurons | Learning algorithm | Learning rate | Goal | CV error
1. [12 5] TrainRP 0.4 0.01 | 0.0061
2 [20 10] TrainRP 0.1 0.01 | 0.0099
3 [30 20] TrainRP 0.5 0.01 | 0.0076
4 [30 15] TrainRP 0.3 0.01 | 0.0030
5 [50 30] TrainRP 0.3 0.01 | 0.0061

The confusion matrix (table 5.9) given below, presents a summary of the
classification results. [t shows the number of true positives, true negatives and false

measures. The sensitivity, specificity and accuracy have been also calculated.

Table 5.9 Classification results using PCA on four types of Ml

Original

/predicted

class Anterior | Inferior | Lateral | Posterior | SE (%)
Anterior 1640 13 3 194 88.64
Inferior 426 3345 76 144 83.81
Lateral 25 4 153 80 58.33
Posterior | 2 1 20 244 91.33

SP (%) 78.35 60.24 60.71 92.40 Acc=84.52%




5.5.3.2 Results on Dataset 2

In this dataset six MI types have been taken and divided into two classes.
Each class contains three related types, that is, classI contains anterior, antero
septal and antero lateral. Class2 contains inferior, infero lateral and infero posterior

MI. The NN architecture and CV errors are given in the table 5.10 below.

Table 5.10 Trained NN architectures and CV errors using dataset2

S/no | Hidden | Learning Learning | Goal cv
Neurons | algorithm rate error
1. [1510] TrainRP 0.3 0.01 0.0136
2 [15 5] TrainRP 0.3 0.01 0.0157
3 [20 10] TrainRP 0.1 0.01 0.0212
4 [30 15] TrainRP 0.5 0.01 0.0085
5 [20 15] TrainRP 0.3 0.01 0.0123

On the architecture number four in the table above the cross validation error is
less as compared to other neural nets that were trained. It has been used to classify the

testing data. The classification results are given by the confusion matrix (table 5.11)

below.

Table 5.11 Classification results using dataset2

Original/Predicted | Classl | Class2 SE (%)
Classl 7997 486
Class2 405 5344 94.27
Specificity (%) 92.95 Accuracy=93.72%




5.5.3.3 Results on Dataset3

In this case we have divided the myocardial infarction types into two classes.
Class1 contains anterior, antero-septal and antero-lateral. ClassZ composed of
inferior types i.e. inferior, infero lateral, infero -posterior and inferio-postero-
lateral MI. The NN architecture and CV errors are given in the table 5.12 below. The

network with minimum cross validation error was selected for testing.

Table 5.12 NN architectures and CV errors

S/no | Hidden Learning | Learning | CV Goal
Neurons | algorithm | rate error
1. [155] TrainRP 0.3 0.0317 | 0.01
2 [20 10] TrainRP 0.3 0.0761 | 0.01
3 [30 15] TrainRP 0.5 0.0905 | 0.01
4 [50 20] TrainRP 0.3 0.0494 | 0.01
5 [50 30] TrainRP 0.3 0.1312 | 0.01
6 [5040] TrainRP 0.3 0.0663 | 0.01

The confusion matrix (table 5.13) given below presents a summary of the
classification results. It shows the number of true positives, true negatives and false

measures also. The sensitivity, specificity and accuracy have been also calculated.

Table 5.13 Classification results on dataset4

Original /Predicted
class classl | class2 SE (%)
classl 8430 683
class2 340 6881 92.5
Accuracy (%) =
SP (%) 95.29 93.73




5.5.3.4 Results on Dataset4

In this case we have three anterior infarction types. We have taken anterior
as class1, antero lateral as classZ and antero septal as class3. The feature set used is
that extracted using PCA. This classification shows that to what extent PCA feature
extraction plus neural net as classifier can classify/discriminate between anterior
types of infarctions themselves. Cross validation errors were noted against each

architecture and the neural net with minimum cross validation error was selected

for testing.

Table 5.14 NN architecture and CV errors

S/no | Hidden Neurons | Learning | Learning | Goal | CV error
algorithm | rate

1. [30 20] TrainRP 0.1 0.01 | 0.8958

2 [40 25] TrainRP 0.3 0.01 | 0.9906

3 [60 50] TrainRP 0.5 0.01 | 0.9029

4 [60 30] TrainRP 0.5 0.01 | 0.4953

5 [50 25] TrainRP 0.3 0.01 | 09721

The confusion matrix (table 5.15) given below, presents a summary of the
classification results. [t shows the number of true positives, true negatives and false

measures also. The sensitivity, specificity and accuracy have been also calculated for

each class.

Table 5.15 Classification results on dataset4

Original/predicted Antero | Antero
class Anterior | lateral | septal | Sensitivity%
Anterior 1401 176 270 75.8
Antero lateral 639 1032 226 54.4
Antero septal 719 432 3559 75.56
Specificity (%) 50.7 62.92 87.76

Accuracy (%) = 70.87
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5.5.4 Ml localization results using Time Domain Features

The extracted time domain features from PTB database were also used for MI
localization for comparison with PCA based technique. In this case we formed two
data sets as shown in the table 5.4. Classification was performed on each data set

separately and results were noted.
5.5.4.1 Results on Dataset1

In this dataset the MI types were divided into two classes. ClassI contains
anterior, antero septal and antero lateral MI types. ClassZ2 composed of inferior types
i.e. inferior, infero lateral, infero posterior and inferio postero lateral. The
classification was done using BPNN was classifier. Several different NN
architectures were applied and CV errors were noted as shown in the table 5.16

below.

Table 5.16 CV error for each NN architecture

S/no | Hidden | Learning | Learning | Goal | CV
Neurons | algorithm | rate error
1. [1510] | TrainRP 0.3 0.01 | 0.8958
2 [30 15] | TrainRP 0.3 0.01 | 0.3734
3 [5025] | TrainRP 0.3 0.01 | 0.3984
4 [4030] | TrainRP 0.3 0.01 | 0.3891

The results are given by the confusion matrix below along with other parameters.

Table 5.17 Classification results

Original/predicted | Class1 | Class2 | Specificity (%) | Sensitivity (%)

Class1 1481 599 90.44 71.2

Class2 107 1013

Accuracy (%) 77.93
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5.5.4.1 Results on Dataset2

In this dataset, the time domain features of MI types included are Anterior,
Inferior, Lateral and Posterior. Each type of MI has been labeled as separate class as
shown in the table 5.4 previously. The classification was done using BPNN classifier.
The CV errors were noted on each architectures and testing was done on the neural
net with minimum CV error. The classification results are give in the table 5.18 as

follows:

Table 5.18 Classification Results

Class Sensitivity Specificity
Anterior 62.0 69.9
Inferior 47.1 61.2
Lateral 81.1 51.2
Posterior 98.1 54.4

5.5.5 Discussion

The time domain features with neural networks classifies infracted and none
infracted (myocardial infarction detection) with best performance parameters i.e.
Sensitivity, specificity and accuracy as compared to that of PCA based features (The

results comparison is shown in figure 5.3).

The performance of time domain features is not good on localization because
time domain features does discriminate in case of infracted vs. non infracted but
overlaps in case when we try to classify within infracted classes themselves. For
example to classify anterior infarction vs. inferior infarction, time domain features
overlap and can’t classify correctly. On the other hand, the feature extraction using
PCA have good results on localization as shown by the localization results. A
comparison of the classification results is shown on time domain features and PCA
with datasets that has the same MI types combinations in figure 5.4 and 5.5. The

better results on PCA are due to the reason that features extracted using PCA are
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more discriminating within infracted classes. It has very interesting results when try
to classify quite different types of infarcts such as anterior types vs. inferior types of

infarction.

Comparison of 4 class localization results on time domain vs. PCA
using BPNN
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Figure 5.4 Results comparison on dataset1 of PCA vs. Dataset2 of Time domain features
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Figure 5.5 Results Comparison of dataset3 of PCA and datasetl of time domain features
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Finally we noted from the results that PCA also does have a problem when
try to classify similar category of infarcts i.e. infarcts which have some common
main artery involved. For example in anterior types of infarctions such as anterior,
antero lateral and antero septal, PCA have poor results. The reason is again features
overlapping. There is a need for some new or hybrid type of feature extraction and
classification techniques such as neuro fuzzy, which may improve localizing such

similar kind of infarcts.
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CHAPTER 6
CONCLUSION AND FUTURE WORK

This work was aimed at the ECG based automatic detection and localization of
myocardial infarction as a decision support system for cardiac expert with main
focus on implementing features extraction and classification techniques. We started
from taking raw ECG from PTB database, performing signal pre processing such as
baseline removal, QRS delineation and iso electric level detection. The main focal
work started from feature extraction. We considered three regions of ECG beat for
feature extraction, that is, ST level, Q wave and T wave region. Time domain features
were extracted using these regions such as T wave amplitude, Q wave amplitude
and ST deviation. This was the first feature (36 dimensional) set to be classified for
detection and localization purpose. The second type of feature extraction set (117
dimensional) was obtained by applying PCA on those MI specific regions. Detection
and localization was done using BPNN as classifier. The detection results on time
domain features came out to be better than that of PCA, that is, the time domain
features can discriminate well between infarcted vs. non infarcted type. For
localization, PCA based features performed better than time domain features.
However the current PCA based features with BPNN classifier performed poor on
more than 4 class localization. The future work in this direction is to work on
hybrid feature extraction and classification algorithms such as neuro fuzzy to

improve the multi class localization performance.
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