Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

Project supervisor: Dr. Muhammad Arif
Project co-supervisor: Mr. Fayyaz ul Amir
Afsar Minhas

Presented by: Muhammad Sajid Riaz
BS (CIS) 8th semester
Roll # 14
Detection of Ischemic ST segment Deviation Episode in the ECG

Presentation Outlines:
• Ischemic ECG Signal
• Database
• QRS detection
• Base line removal
• Isoelectric level calculation & removal
• Feature extraction
• Data Normalization
• Feature reduction using PCA
• Results Analysis
Reflexion of Ischemia in ECG:

- ST segment deviation
 - i. Elevation
 - ii. Depression
- T wave Inversion
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

Ischemic ECG signal
Database:

- EDC-ESTT database

The European ST-T Database is intended to be used for evaluation of algorithms for analysis of ST and T-wave changes. Each record is two hours in duration and contains two signals, each sampled at 250 samples per second.
Detection of Ischemic ST segment Deviation Episode in the ECG

System Architecture

- ECG Signal
- QRS detection
- Baseline removal
- Baseline removed signal
- Isoelectric level removal
- Feature extraction
- Feature reduction (PCA)
- Neural network training
- Testing and results calculation
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

Base line Removal

• Baseline wandering can result from the motion of electrodes, perspiration or respiration.
• It causes problems in analyzing ECG signals.
• Two techniques used for baseline removal
 • Spline interpolation
 • Median filtering
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG
Median filtering

• In this procedure we first compute the median of the signal values and subtract this median value from the signal.

• Fifth polynomial is fitted to this shifted waveform using least squares method to obtain a baseline estimate.
Median filtering

• Subtract the baseline from the original ECG to get the Baseline removed signal
Detection of Ischemic ST segment Deviation Episode in the ECG
Detection of Ischemic ST segment Deviation Episode in the ECG

Using Spline interpolation

• Mean of the Signal is subtracted from it,
• First order polynomial is fitted on the mean subtracted signal, to find the baseline estimates.
• This baseline estimates are subtracted from the Signal to obtain it’s Baseline removed form.
Detection of Ischemic ST segment Deviation Episode in the ECG

Using Spline interpolation [4]
Comparison of the two techniques

• Use of the median filtering based approach can remove only slowly varying baseline drift.
• First order polynomial is able to cope up with fast baseline variations.
• Therefore for ST segment variations Spline fitting is better to use. (according to literature)
Final presentation
Detection of Ischemic ST segment Deviation Episode in the ECG

Blue - Median
Red - Cubic Spline
ST segment of the cardiac cycle represents the period between depolarization and repolarization of the left ventricle. In normal state, ST segment is isoelectric relative to PR segment.
ST segment deviation episode requires

- ST segment
- Isoelectric level
- ST deviation = ST segment - isoelectric level
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

QRS detection
QRS detection

In order to proceed with ST deviation:

• QRS onset
• QRS offset
• QRS fudicial point.
• DWT (discrete wavelet transform) based QRS detector.
Final presentation
Detection of Ischemic ST segment Deviation Episode in the ECG

EDC Database Subject #e0103 QRS points
Detection of Ischemic ST segment Deviation Episode in the ECG

EDC Database Subject #e0509 QRS points
Isoelectric level:

- Flattest region on the signal
- Value equal or very close to zero.
- Region starts 80ms before the QRS on
- Ends at QRS on.
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

EDC Database Subject #e0515 Isoelectric level
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

EDC Database Subject #e1301 Isoelectric level
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

Feature extraction:

• ST region refers as ROI (region of interest)
• ROI (26 samples after the qrs_off)
• Subtraction Isoelectric level from ROI
• ST deviation
Detection of Ischemic ST segment Deviation Episode in the ECG

ST deviation: e103_MLIII
Final presentation
Detection of Ischemic ST segment Deviation Episode in the ECG

ST deviation: e121_MLIII
Data Normalization:

• Equal weightage of all the features
• Mean of the data \((u)\)
• Standard deviation of the data \((\text{Std})\)
• Normalized data \(= \frac{(x - u)}{\text{Std}}\)
Final presentation
Detection of Ischemic ST segment Deviation Episode in the ECG

Feature Space:

• Size of the features is 26 X no. of beats of each subject
• Which is more time consuming when it comes to classify or train a neural network for it.
Detection of Ischemic ST segment Deviation Episode in the ECG

PCA (Principal component analysis):
PCA is used for Dimensionality Reduction.
Why Dimensionality Reduction?
• Reduces time complexity: Less computation
• Reduces space complexity: Less parameters
• Saves the cost of observing the feature
PCA (Principal component analysis): Here we chose some $k < n$ features ignoring the remaining features. n is total number of Features.

Our objective here is to chose the best feature set that contributes the most in classification out of the given Data set.
Final presentation
Detection of Ischemic ST segment Deviation Episode in the ECG

PCA (Principal component analysis):

Procedure:
1. Project the data as 1-dimensional Data sets
2. Subtract mean of the data from each data set
3. Combine the mean centered data sets (mean centered matrix)
4. Multiply the mean centered matrix by it’s transpose (Covariance matrix)
PCA (Principal component analysis):

Procedure:

5. This covariance matrix has up to P eigenvectors associated with non-zero eigenvalues.

6. Assuming P<N. The eigenvectors are sorted high to low.

7. The eigenvector associated with the largest eigenvalue is the eigenvector that finds the greatest variance in the data.
Final presentation
Detection of Ischemic ST segment Deviation Episode in the ECG

PCA(Principal component analysis):

Procedure:

8. Smallest eigenvalue is associated with the eigenvector that finds the least variance in the data.

9. According to a threshold Variance, reduce the dimensions by discarding the eigenvectors with variance less than that threshold.
Detection of Ischemic ST segment Deviation Episode in the ECG

Training of MLIII Data

• Total beats: 184246
• Used for Training NN: 52493
• Used for Cross-validation: 20123
• Used for Testing: 110595
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

Training Results

<table>
<thead>
<tr>
<th>Lead</th>
<th>Total Beats</th>
<th>Training Beats</th>
<th>Cross-Validation Beats</th>
<th>Cross-Validation Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLIII</td>
<td>73651</td>
<td>52493</td>
<td>20123</td>
<td>0.068%</td>
</tr>
</tbody>
</table>
Detection of Ischemic ST segment Deviation Episode in the ECG

Accuracy Parameters
TP (True Positives)
Target and predicted value both are positives.
FN (False Negative)
Target value is +ive and predicted one –ive.
FP (False Positive)
Target value is –ive and predicted one +ive.
TN (True Negative)
Target and predicted both are –ive.
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

Accuracy Parameters

Sensitivity
TP/(TP+FN)\times 100

Specificity
TN/(TN+FP)\times 100
MLIII Data

<table>
<thead>
<tr>
<th>Lead</th>
<th>Total beats</th>
<th>Normal</th>
<th>Ischemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLIII</td>
<td>184246</td>
<td>174830</td>
<td>9416</td>
</tr>
<tr>
<td>Training</td>
<td>73651</td>
<td>68939</td>
<td>4712</td>
</tr>
<tr>
<td>Testing</td>
<td>110595</td>
<td>105891</td>
<td>4704</td>
</tr>
</tbody>
</table>
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

MLIII Testing Results

<table>
<thead>
<tr>
<th>Lead</th>
<th>No. Of Beats</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLIII</td>
<td>110595</td>
<td>21%</td>
<td>99%</td>
<td>0</td>
</tr>
<tr>
<td>MLIII</td>
<td>110595</td>
<td>4%</td>
<td>99%</td>
<td>0.7</td>
</tr>
<tr>
<td>MLIII</td>
<td>110595</td>
<td>76%</td>
<td>72%</td>
<td>-0.7</td>
</tr>
</tbody>
</table>
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

MLIII Results
Final presentation
Detection of Ischemic ST segment Deviation Episode in the ECG

MLI Data Results

<table>
<thead>
<tr>
<th>Lead</th>
<th>Sensitivity</th>
<th>specificity</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLI</td>
<td>42%</td>
<td>35%</td>
<td>-0.78</td>
</tr>
</tbody>
</table>
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

V1 Data Results

<table>
<thead>
<tr>
<th>Lead</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>58%</td>
<td>51%</td>
<td>-0.69</td>
</tr>
</tbody>
</table>
Final presentation
Detection of Ischemic ST segment Deviation Episode in the ECG

V2 Data Results

<table>
<thead>
<tr>
<th>Lead</th>
<th>Sensitivity</th>
<th>specificity</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2</td>
<td>54%</td>
<td>46%</td>
<td>-0.73</td>
</tr>
</tbody>
</table>
V3 Data Results

<table>
<thead>
<tr>
<th>Lead</th>
<th>Sensitivity</th>
<th>specificity</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>V3</td>
<td>75%</td>
<td>58%</td>
<td>-0.82</td>
</tr>
</tbody>
</table>
Detection of Ischemic ST segment Deviation Episode in the ECG

Analysis:
Where is the problem?
• QRS detection
• Baseline removal
• ST segment and Isoelectric level detection
• Data Labels
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

Analysis:

QRS detection

• no problem with QRS detector
• Detects QRS on, off and fiducial points efficiently

Baseline removal

• Used world wide for the variation of ST segment so nothing is wrong with this one.
Analysis:
ST segment and Isoelectric level detection
• If QRS detector has no problem than ST segment and Isoelectric levels has absolutely no problem
Data Labels
• No problem with Data labels because I match them with online physionet Database viewer.
Summary:

• Ischemic Signal
• QRS Detection and Base line removal
• Detection and removal of Isoelectric level
• Feature extraction and reduction (PCA)
• Results & Analysis
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

References

[1] ANALYSIS OF PCA-BASED AND FISHER DISCRIMINANT-BASED IMAGE RECOGNITION ALGORITHMS by Wendy S. Yambor

[4] Open Heart: ECG based Cardiac Disease Analysis & Diagnosis System\ by Mr. Fayyaz-ul-Amir Afsar Minhas

[5] PCA & other dimensionality reduction methods , Mr. Fayyaz ul Amir Afsar Minhas
Final presentation

Detection of Ischemic ST segment Deviation Episode in the ECG

References

Final presentation
Detection of Ischemic ST segment Deviation Episode in the ECG

THANKS.....