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Abstract

“As many as 1.4 million children are suffering froheart related diseases in
Pakistan” The NEWS (Sunday 18th December, 2006). All over world major
causes of death are heart diseases. Thus, themeeds of computer aided reliable
system, which can share load of cardiac expertsmonitoring and detecting
arrhythmias.

The project is aimed at the exploration of the masi approaches involved in
the Fuzzy learning of a Classification Systems. ©bgective is to study different
techniques involved in effective learning of Fuzzhassifier from data, and applying
the built system on ECG based arrhythmia recognitio

Our methodology is based on learning rules frona desing prototype based
Fuzzy System. DWT was used for feature extracttomfsegmented QRS complex.
The Pruned Weighted Fuzzy K-NN (using fast seagystem was used for Beat
Classification. The system was also tested aftdingddifferent levels of noise in data
and for data reduction, giving accuracy of abo@7-6% for 6 classes and ~97.0% for
9 classes. Data pruning was used to reduce traisamgples thus, increasing

computational efficiency.



Chapter 1. Introduction

Heart diseases are leading cause of deaths int&alamd all over the world. In
Pakistan, on average 1 out of 4 persons is sufférom cardio vascular diseases.
Early detection of such diseases is necessary,ensdnptoms can be seen when
observed for long period of time, at initial stagAs the chip size is getting smaller,
computers and algorithms getting faster, technidaesiomedical signal processing
and analysis are getting more reliable. ComputeediSystem for automatic Cardiac
Disease Diagnosis using ECG is becoming esseptididlping experts and reducing
their load.

Fuzzy classification system for detection of cardisseases using ECG was
built. ECG analysis was done to extract usefuluiesst from annotated ECG signals of
normal persons and patients of various cardiaadess.

Most of the techniques used for beat classificaietoo rigid and crisp to deal with
automated ECG analysis. So, Lotfi A. Zadeh (Unikgref California, Berkeley)
purposed Fuzzy Sets, they were able to represehtwamk on natural language
variable, natural language vagueness and noiset.obu

The purposed methodology uses Fuzzy k- Nearest hWerg for the
classification purpose, which gives robust andateé results. The feature extraction
was done by wavelet domain analysis of ECG datdedtures from wavelet domain
analysis and RR interval were used for classificatgiving accuracy of about ~

97.6% for 6 classes and ~97.0% for 9 classes.

1.1 Project Objectives

Project is aimed at development of an initiallyliof ECG analysis and Arrhythmia
Classification System using ECG. ECG is used berauss most widely used
technique for cardiac disease detection and diagndkse reason for widespread use
of ECG is because; it is noninvasive and reliablehhique for getting information
about activity of heart. It is an effective way &malyze heart’s electrical and

mechanical activities. Any abnormality in heart$iaty can be seen in ECG.



1.2 System Architecture

The steps involved in technique used are shownguaré 1.1.:

ECG Beats QRS Extraction

Wavelet Transform
based Feature
Extraction

Normalization Classification Beat Classification

Figure 1.1 Steps of DWT Based Beat Classification

The techniques used involve signal preprocessin®S (Detection &
segmentation, feature Extraction and classificati@ing prototype based fuzzy
classifiers, and MATLAB environment was used forgmse of all implementation.
MATLAB distributed computing environment was used for feature extraction
techniques to reduce time taken. Database for E@@ecfrom the Massachusetts
Institute of Technology, Beth Israel Hospital (MBIH) arrhythmia database. The
architecture of the system designed will be as shiovFigure 1.2.

Feature
Real Time Data /———— > Extraction

Fuzzy

Classifier

Feature s
TrainingData .
Extraction

\'4

Rule
Targets . ‘
Extraction

Figure 1.2 Fuzzy Classification System

Classifier
Model




1.3 Organization of thesis

Thesis draft serves as a detailed description efptioject. It presents steps involved
in Feature extraction and Cardiac arrhythmia Cligssion. Chapter 1 gives the
introduction to project. Chapter 2 gives an intrctthn to Heart and ECG. Chapter 3
gives the detail about ECG and Cardiac Diseaseapt€h4 gives a brief literature
survey. Chapter 5 gives details about ECG Procgg$simFeature extraction. Chapter
6 gives description about dataset used. Chaptezsépts Beat classification in detail.
Chapter 8 presents Results & Discussion and givesilsl about performance

evaluations. Chapter 9 gives the conclusion of vaord future work proposals.



Chapter 2. Heart & ECG

Heart is biological blood pumping device. It is @lectromechanical pump like any
other electric pump. It also needs electric curr@ather impulse) to perform its
mechanical activity (pumping). Heart has specialenavhich generate required
electric impulse. Heart has even a backup battBacKkup node which provides

electric impulse if primary nodes cannot providdrapulse).

2.1 Working of Heart

Heart pumps oxygenized blood from lungs to body fioch deoxygenized body to
lungs. Heart is an electromechanical pump whichsist® of myocardium (heart
muscles) which contract and expand on electric IsguAll cells of heart have ability
to polarize and depolarize. Heart requires a soafa@nergy and oxygen in order to
function. Energy needed for heart's pumping actiomes from its built-in electrical
conduction system.

Heart consists of four chambers and is locate@finhlalf of chest behind the
rib cage and is surrounded by pericardium. Thecpatium is a two layer structure
with a adequate quantity of lubricating fluid beémethem. When it becomes
inflamed, quantity of fluid between layers increas&his compresses heart and
restricts its action. The pericardium is fluid ddl membrane that surrounds heart and
roots of blood vessels and acts as shock absoybezdoicing friction between both
layers. The pericardium has several functionsedigs the heart contained in the chest
cavity. The pericardium also prevents the heamnfraver expanding when blood
volume increases.

Heart has two main functions gathering deoxygenizedd from body and
sending it to lungs and getting oxygenized bloadnflungs and sending it to body
and it’ self. Upper tow chambers of heart are chbdria, they are connected with
veins and they are responsible for getting bloagh{ratrium receives blood from
body via Vena Cava and left atrium receives blaoehflungs via pulmonary veins).
Atria’s then contract supplying stored blood to &wchambers which are called

Ventricles through one way valves. On ventriculantcaction blood is pushed to



body and lungs from left and right ventricles redpely. Heart also needs blood

supply, which it gets from coronary arteries orging from aorta.
2.2 Electrical Activity of Heart

Being an electromechanical pump, heart uses itnat electric supply generated
within heart. Cardiac contraction and expansionuo@&s a result of cardiac action

potential.

2.3 Cardiac Action Potential and Myocardium

The significant purpose of heart cells is to caritend expand with a certain pattern
for making heart pump the blood. The contractiohkeart cells are triggered by an
electrical impulse (spike) known as the action pb&t [23]. Before explaining the
cardiac action potential, we must first know whaiaation potential is.

A cellular membrane surrounds every cell in ounybdifferent ions (charged
particles) can move across membrane through th@aspen channels. The channels
only allow one type of ions to pass through at tiime and block other type of ions.
Due to this partial passing of ions, an electrigeddient is established across the
membrane, this potential generates a contractiadignt across the membrane. Cells
of our body are normally negative from inside wiéspect to its surroundings; this is
known as resting potential. Some cells are speeidlin rapidly reversing their rest
potential to go positive from inside; these arewnas excitable cells. The potential
generated by this is known as action potentials Tdicaused by opening of voltage
gate of ion channels which allowing to entry ofifige ions through them.

Cardiac cells have a negative membrane potentignvdt rest. A variation
between cardiac myocytes and remaining is how these Ca2+ (positive ions) to
stimulate contraction. In cardiac myocytes, releas€a2+ from the sarcoplasmic
reticulum is induced by Ca2+ invasion into cellnfrovoltage-gated calcium channels
(ion channel only allowing calcium) causing musctetraction. After a delay, (the
absolute refractory period), Potassium channelgae@nd the resulting outward flow
of K+ causes repolarization to the resting statellsCat pacemaker nodes have
calcium channels which allow fast depolarizationhiler ventricular cells have

channels which open slowly.



The action potential of the ventriculicells is usedio understar cardiac
action potentigl also shown in Figure 2.1 The action potential has 5 pha
(numbered 0-4)Phase 4 is the resti potential, when the cell is not being stimula

a0 —
Y, [yl

I I I I I [ I I I I I
200 400 800 1000

| Time [ms]

Figure 2.1 Cardiac Action Potential [21]

After being eclectically simulated the cell, it lneg) series of actions involvir
influx and efflx of differen ions which producethe action potential of ¢t and
simulating theadjacencells. This conducts the stimulation to all cells of he

2.3.1 Phase 4

Phase 4 is the resting potentCell remains in this phasentil it is stimulated by a
external sourceThis phase of the action potential is associatiéitl diastole

2.3.2 Phase 0O

Phase 0 is the swittepolarization phase. The slope of phase 0 repieseaquick
depolarization of cellDue to the opening of fast Na+ channels causinglnayfliux cf
Na+ ionsinto the cell.Ability of cell to open the fast Na+ channels durpitase O i
related o resting potential emoment of excitation.

If restingpotential is at its baseline (abc-85 mV), all fast Na+ channels &
closed, and excitation will on them all, causing a large influx of Na+ io

However,if resting potential is less negative, somefa$t Na+ channels wi
remain closed, thugsulting inlesser response to excitation of cell. For thisoeaif
the resting potential becomes tocsitive, cell may not be excitable, and conduc
through the heart may be delayed, increasing #fkefor arrhythmia:



2.3.3 Phase 1

This phase of action potential occurs with closifidast Na+ channels. The transient
net outward current causes small downward deflectib action potential, due to

movement of K+ and CI- ions across ion channels.

2.3.4 Phase 2

This phase of the cardiac action potential is sustaby balance between inward
movement of Ca2+ through calcium channels (L-tyctv open slower and remain
open longer) and outward movement of K+ through shew delayed rectifier

potassium channels.

2.3.5 Phase 3

During phase 3 of action potential, the L-type CaPainnels close, while the slow
delayed rectifier K+ channels are still open. Thigrantees a net outward current,
corresponding to negative change in potentialyaiig more types of K+ channels to
open.

These are rapid delayed rectifier K+ channels &edintwardly rectifying K+
current. This net outward, positive flow caused ogpolarization. These channels
close when potential is restored to about -80 for¥ .

2.3.6 Pacemaker Potential

The heart's cells possess ability to generate ragbotentials, causing cardiac
contraction; sinoatrial node (Primary pacemakerenad primarily responsible for
initiation of process. SA node can generate impulsster than other pacemaker
nodes. Cardiac cells have refractory periods fahowcontraction, during this period
no other contraction can be initiated, their padeanaotential is overridden by the
sinoatrial node. Cells in SA node naturally disgea(create action potentials) at
about 60-100 times/minute [20].

In case SA node stop functioning, then anothertetusf cells with much
similar properties becomes the pacemaker and iwhkras atrioventricular node (AV
node), which is an area between the atria and ietggr If even this backup node does



not work then, many small pacemaker sstart working Conduction network wit

pacemakers is shown Figure 2.2:

Sinus node
T0/min

2-% node
50/min

Eundle ofHis

Bundle branches

Furkinje fibers
15-30/min

Figure 2.2 Cardiac Conduction System

2.3.7 Conduction of Electrical Activity

The electrical conductic system of heart allows propagation of impulse gateer by
SA node. Themyocardium(heart muscletontracts after stimulatiollt is a rhythmic
flow allowing efficient contraction of the hee

The electrical potential is originated in SA n; it depolarizes animoves
quickly to AV node. Conduction through AV node is very s after which impulse
again moves quickly until it reaches his bui from where depolarization movito
whole through Puwinje fiber. The generated potential differencimoves to surface
of body throughtissues in contact with the heart ais used to monitor electric:

activity in the heart, nc-invasively.



2.4 Measurement of Cardiac Electrical Activity

Measurement of elecc activity of any electrical equipment is necesséoy
maintaining check and balance, or to detect anyrbalities in function. Same
right in case of heart, as heart is in side bodgditey a noninvasive measurem
technique. In 1872Alexander Muihead recorded of heartbezta fever patient b
attaching wires to his wrist and usirLippmann electromet. If these are the
requirements then ECG (Electrocardiogram) is th& lbhoice available. ECG is
noninvasive tool to observe cardiac electritivity and is in use from almost
century. ECG is widely used for analyzing hearttmhy and conduction network
heart. ECG records electrical activity of heartsusr time. ECG was invented
century ago by Willem Einthoven (1901) and got Nolstrize n 1924 for his
invention (Figure 2.ZEinthoven's ECG MachineHe used a string galvanomet
very thin and long filament made up of glass withies coating to allow conductio
and delicate optical equipment, as showrFigure 2.3 Initially published ECG i
shown in Figure 2.4.

5 £y T i
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Figure 2.3 Architecture of Einthoven’s ECG machine
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ECG is calculated by observing electrical potentiifference betwee
electrodes connected to different parts of bodygidiomedical instrumentatic
amplifier. A specific combination of these electesdnakes up a lea

' tH - . :" 8
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Figure 2.4 Early Einthoven ECG
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Figure 2.5 Einthoven's ECG Machine
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2.5 Components of ECC

There are seven main components of an ECG waversimcFigure2.6.

2.5.1 Baseline

It is also called isoelectric line. It representssence of any electrical activity
cardiac tissueslypically it is measured asgortion of tracing following the T wav
and peceding the next P wa

2.5.2 P wave

P wave represents the atria depolarization and mereof cardiac impales from £

node to AV node.

2.5.3 PR interval

PR interval is the time gap between atrial and nveuwitar depolarization, it is due
the slow conduction cdmpulse through AV node.

O mon
hundle

Bundle .
branches

Purkinje
fikers

“entricular
muscle

T T T I I T 1
Time[ms] 0 100 200 300 400 S00 G000 700

Figure 2.6 Components of ECG
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2.5.4 QRS complex

This complex represents the contraction / depa#dm of ventricles, when impulse

is conducted through Purkinje fibers.

2.5.5 ST segment

It is isoelectric segment between S and T waves.

2.5.6 T wave

It represents ventricular repolarization.

2.5.7 U wave

U waveis normally visible in 50 to 75% of ECGs.
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Chapter 3. Cardiac Diseases

ECG is a non-invasive method to monitor cardiagvaies. Being a non-invasive
method it is majorly used to watch out of heat\aintis. Pacing of heart is due to
variation in bioelectric potential in heart. Thistential is generated by pacemaker
sites which regulates rate of heart beats. Thoglectric impulse / potential spread
through special conduction network.

The normal/regular sinus rhythm shows the stabilityelectric conduction
system and pacemaker nodes. Any abnormality intredlesystem may cause
abnormal rhythm (also known as arrhythmias) reigcttheir presence in ECG.
Automated classification of arrhythmias is of gréauportance because some of
arrhythmia (like Premature Ventricular Contractiomdicates life threatening
conditions.

ECG presents electric activity in heart generatgdpacemaker sites. Any
incongruity in this conduction system or pacemadits results in change of normal

ECG pattern which may be harmful.

3.1 Types of Diseases

Cardiac disease is a root term for a number okwdfit diseases which affect the
heart. Cardiac diseases are a very significantecatisleath all over the globe. The
most common cardiac diseases are:

» Coronary Artery Disease is a condition where ddppsell- increase or blood
clot in the arteries, resulting in a failure or wetion of blood supply to the
myocardium (heart muscle) and the coronaries, wiialg cause infarction or
heart attack.

* Ischemia or Ischemic Heart Disease (IHD) is a cooiin which blood
supply to the myocardium (heart muscle) is reducedally due to coronary
artery disease (atherosclerosis of the coronagyias). It is also known as or
Myocardial Ischemia (lack of blood to heart musgles

» Cor Pulmonale, is disorder in right ventricle, doean increased pressure in

right ventricle, causing Ventricular Hypertrophy.
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» Hypertensive heart disease, caused by high bloeskpre.

* Inflammatory heart disease causes inflammatioh®ityocardium and/or the
tissue surrounding it.

* Valvular heart disease causes abnormalities inegabf the heart (on left,
aortic and mitral valves and pulmonary and tricdsgilves on right).

* Arrhythmia is a term for a large number of differeonditions in which there
is abnormal electrical activity in the heart. Theat beat may be too fast or

too slow, and may be irregular.

As the subject at hand is Cardiac Arrhythmias. Thues will be discussing

this topic in detail now onwards.

3.2 Cardiac Arrhythmia

These abnormalities in ECG are may be result ofaan@present a cardiac disease.
Some of these abnormalities are life-threateniegdmg urgent medical care else can
result in heart attack. While, some cause infurgatsymptoms such as abnormal
consciousness of heart beat, and may be mereigtimg. While, others possibly not
related to any symptoms, but prompt toward potéwntide threatening stroke.
Arrhythmia may be classified with respect to the sif origin:

3.2.1 Atrial Arrhythmias

* Premature Atrial Contraction (PAC) / Atrial PremraBeats (APB)
* Wandering Atrial Pacemaker

* Atrial Flutter (AF)

* Atrial Fibrillation

3.2.2 Junctional Arrhythmias

e Super Ventricular Tachycardia (SVT)

» Paroxysmal Supra-ventricular Tachycardia (PSVT)
* Jynctional Rhythm

» Junctional Tachycardia

* Premature Junctional Complex
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3.2.3 Atrio-ventricular

* AV reentrant tachycardia
o Wolff-Parkinson-White syndrome

o0 Lown-Ganong-Levine syndrome

3.2.4 Ventricular

* Premature Ventricular Contractions (PVC)
* Accelerated Idioventricular Rhythm

* Monomorphic Ventricular Tachycardia

» Polymorphic Ventricular Tachycardia

» Ventricular Flutter

* Ventricular Fibrillation

3.2.5 Heart Blocks

» First Degree Heart Block
» Second Degree Heart Block

* Third Degree Heart Block

3.3 Arrhythmias Used for Beat Classification

Classifying arrhythmias involves the recognition afaracteristic patterns of the
electrocardiogram (ECG). Beat classification isi@portant step in designing an
arrhythmia classifier as many arrhythmias simplgsist of a single abnormal beat as
opposed to a constant rhythm disturbance. Type e@itsh (arrhythmias) used in
classification are:

* Normal Sinus Rhythm (NSR)

* Bundle Branch Block (BBB)

* Premature Ventricular Contraction (PVC)

» Atrial Premature Beat (APB/PAC)

* Paced Beat/Rhythm (PB/PR)

* Ventricular Flutter (VF)
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* Fusion of VF and NSR (FV&N)
* Fusion of NSR and PVC (FN&P)

3.3.1 Normal Sinus Rhythm (NSR)

This is the normal pattern of beats under a normearrt. The SA node acts as the
primary source of electric signal to heart via bisxdle branch. It is recognized by
beat rate ranging from 60 ~ 100 bpm and regularaew in leads I, 1ll and aVF.
The Extracted QRS Complex for such rhythm is showifigure 3.1.

Mean & Stdev for Normal
150 —————— —

Amplitude (ADC units)

| |
| |
| |
| |
| |
1 1
10 20 30 40 50 60
Sample Number

70

Figure 3.1 QRS Complex for NSR

3.3.2 Bundle Branch Blocks (BBB)

As the name suggests BBB is the result of a bloekagonduction of electric signal,
when it passes through his Bundle Branch. Theretwoetype of Bundle Branch
Blockage:

3.3.2.1 Left BBB (LBBB)

It is caused by the blockage in left bundle brarfttis blockage results in:
e ST depression in leads I, aVL, V5 and V6
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* Widening of QRS complexes (>0.12s)

The Extracted QRS Complex for such rhythm is showiigure 3.2.

Mean & Stdev for LBBB

Amplitude (ADC units)

Sample Number

Figure 3.2 QRS Complex for LBBB

3.3.2.2 Right BBB (RBBB)

It is caused by the blockage in right bundle brafttis blockage results in:

* Terminal broad S wave in leads |
* RSR’complexinlead V1
* Widening of QRS complexes (>0.12s).

The Extracted QRS Complex for such rhythm is showigure 3.3.
3.3.3 Premature Ventricular Contraction (PVC)

PVC is caused when an electrical signal is gengraféhin ventricles before sinus
beat is expected. PVC results in:

* No P-wave
* Widening of QRS complex

The Extracted QRS Complex for such rhythm is showifigure 3.4.
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Mean & Stdev for RBBB

(snun o@vy) epnijdwy

Sample Number

Figure 3.3 QRS Complex for RBBB

Mean & Stdev for PVC

380 F————————————
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Figure 3.4 QRS Complex for PVC

3.3.4 Atrial Premature Beat (APB/PAC)

APB is caused when an electrical signal is genéradéhin atria before sinus beat is

expected and shown in Figure 3.5. APB results in:
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* Contour P-wave
* Widening of PR interval
* Narrowing of QRS complex (<0.10s)

Mean & Stdev for APB

Amplitude (ADC units)

Sample Number

Figure 3.5 QRS Complex for Artial Premature Beats

3.3.5 Paced Beat/Rhythm (PB/PR)

It is caused by artificial pacemaker activates telecignals in to ventricles. This
results in:

* No P-wave
* Widening of QRS complex

The Extracted QRS Complex for such rhythm is showigure 3.6.
3.3.6 Ventricular Flutter (VF)

There is no P wave visible. A form of rapid venttar tachycardia in which the
electrocardiographic complexes assume a regulanlatinly pattern without distinct
QRS and T waves with a frequency between 180 arfidk@ats per minute. The

extracted QRS complex for VF is shown in Figure 3.7
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Mean & Stdev for PB
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Figure 3.6 QRS Complex for Paced Beats

Mean & Stdev for VF
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Figure 3.7 QRS Complex for Ventricular Flutter

3.3.7 Fusion Beats

Fusion beats occur when two opposing electricaletitls meet and collide within the

same chamber at the same time.
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3.3.8 Fusion of VF and NSR (FV&N)

Fusion of VF and NSR (i.e. P wave is present). Ekieacted QRS Complex for such
rhythm is shown in Figure 3.8.

Mean & Stdev for FN & V

Amplitude (ADC units)

Sample Number

Figure 3.8 QRS Complex for Fusion of NSR & VF

3.3.9 Fusion of NSR and PVC (FN&P)

PVC occurs at in relation to the same time thaggalar beat occurs and depolarizing
the ventricles simultaneously in two different difens. It characterized by

complexes that have both the characteristics of R¥M@ QRS complex of normal

rhythm. The complex is usually narrower and of éesamplitude than a PVC alone.
The P to P, and R to R interval will remain constdh cannot be recognized

clinically, it can only be recognized as electrigalThe criteria of fusion includes

regular rhythm, and heart rate of normal rhythnmthv)RS usually wider than 0.12,

P wave same as normal rhythm and PR interval meashbrter than normal rhythm.

Fusion of PVC and NSR (i.e. P wave is present).

The Extracted QRS Complex for such rhythm is showiigure 3.9.
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Mean & Stdev for FP & N
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Figure 3.9 QRS Complex for NSR & PVC
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Chapter 4. Literature Review

Electrocardiography deals with the electrical attiwof the heart. The condition of
cardiac health is given by ECG and heart rate.utlysof the nonlinear dynamics of
electrocardiogram (ECG) signals for arrhythmia eltarization is considered. The
statistical analysis of the calculated featuredcetgs that they differ significantly
between normal heart rhythm and the different dhmmya types.

Many researches explored different techniques flassdication of cardiac
rhythms. There are two components of medical diagnsystem.

* Feature Extraction

* Classification

4.1 Feature Extraction

The statistical analysis of the calculated featumdgcates that they differ extensively
between normal heart rhythm and different arrhythtgpes and hence, can be rather
useful in detection of ECG arrhythmia. The discniation of ECG signals using non-
linear dynamic parameters is of essential impodancthe cardiac disease therapy
and chaos control for arrhythmia defibrillationtire cardiac system.
Many feature extraction techniques used, existitgrdture for arrhythmia

classification. These can be classified in follogvdomains:

» Time Domain

* Frequency Domain

* Time-Frequency (Wavelet)

» Filter Banks

* Blind Source Separation (BSS)

* Independent Component Analysis

» Higher Order Statistics

* Hermite Basis

* Phase Space Reconstruction

* nonlinear dynamical modeling
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For the purpose of classification many classifibtsld, such as; Linear
Discrimination, Neural Networks, Support Vector Maxes, Fuzzy and Neuro-Fuzzy
Expert Systems and Ensemble based Techniques.

Many techniques exist in literature for the wandgrbaseline removal. These
techniques can be classified as:

» Filtering Based Techniques
A high pass filter is designed, such that it rensowee slowly changing

baseline. For cutoff frequency, the lowest freqyecmmponent in the ECG is
selected to minimize the signal distortion.

* Polynomial Based Techniques
Polynomial fitting based approaches aim at curtng on ECG or some

sampled points from signal. Polynomial based appres do not cause any

distortion in ECG as is caused by linear filteriAgpopular approach is to use

cubic spline fitting [24].

In [11] Five levels of discrete wavelet transforraat(DWT) are applied to
decompose the signal into six sub band signals eifterent frequency distribution.
Higher order statistics proceeds to calculate \@d&iéeatures from the three midland
signals. Three RR interval-related features areeddd build a feature vector of 30
features. The proposed method demonstrates a pngnaiscuracy of 97.53 % using
Setb.

Many researchers have used effective signal asalgeshniques for the
classification of cardiac rhythms. In this sectime present a review of existing
approaches for beat classification. Minami [12] dnaxsed Fourier Transform (FT)
based Frequency Domain techniques for beat clea8dn. This method achieves a
Sensitivity/PPV of ~98%.

A technique using filter banks was given by Alfori{8). Frequency based
techniques for rhythm classification offer moreiakle prospects as they are more
robust to noise in contrast to time domain methadd present a more effective
representation of the QRS complex. Dokur [9] cdrrmut a comparative study
Fourier Transform and Wavelet Transform (WT) den@isg the efficiency of the
WT as it provides a higher classification accur&myten types of beats from the
MIT-BIH Arrhythmia database [10] in contrast to Feu Transform.
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4.2 Beat Classification

Classifying arrhythmias involves the recognition dfaracteristic patterns of the
electrocardiogram (ECG). Beat classification isiaportant step in designing an
arrhythmia classifier as many arrhythmias simplgsist of a single aberrant beat as
opposed to a sustained rhythm disturbance. Prewtudies have employed different
features in most beat classifiers.

Senhadji [25] investigated features extracted fribm® wavelet coefficients
using linear discriminates. Hu [26] used the amgk of points surrounding the QRS
complex as features and a neural network modéleaslassifier.

Yeap [3] also employed neural networks as the dlassnodel and used the
QRS width and amplitude along with three other rmaearments made on the ECG as
features. It is difficult to compare the resultstlasse studies employed different data
sets.

A method extracting 11 features from wavelet deaositpn sub-bands of an
input ECG signal and applies a probabilistic neuwnatiwork for classification of 6
types of beats from MIT-BIH Arrhythmia database iaeng accuracy greater than
99% was presented by Yu [13].

Method using features such as heart beat interiRisintervals and spectral
entropy of the ECG signal along with a NN classifie achieve an accuracy of
99.02% over the MIT-BIH Arrhythmia database wasdusg Niwas [13].

ECG analysis by extracting 30 principal componérms the ECG signal for
classifying 4 types of heart beats from the MIT-Béthythmia database with an
accuracy of 99.17% was performed by Hao [15].

Exarchos [16] used a rule mining approach for tHassification of
arrhythmias using a fuzzy inference system achg®®% accuracy in classifying 4
types of beats (Ventricular Fibrillation, PVC, 2ddgree heart block, and Normal
beats) in the MIT-BIH database using time domaatuees for each beat.

Yu [17] based on the use of independent componeadysis (ICA) has been
proposed, using 27 features for the classificatibé types of beats from MIT-BIH
database with an accuracy of 99%.

Chen [18] used DWT along with higher order statstand RR interval

features to produce a 30 dimensional feature sedidtection of 8 types of rhythms
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with a feed-forward back propagation NN with 97.53%curacy. Chen et al. also
present the results of their method for the classibn of the 6 types of heart rhythms
~99.7% accuracy.
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Chapter 5. ECG Processing

The proposed method uses features extracted fro@ tBough the Dyadic Wavelet
Transform as in [19] for ECG delineation. The apgiion of the same wavelet
transform for ECG delineation along beat clasdiitca reduces overall system
complexity. Furthermore, the Dyadic Wavelet Transfanakes the feature extraction
process more robust to noise. The 11 features aigedlso very simple to compute
from the sub-band decompositions generated from CANA there is no significant
computational load. Moreover we have used PCA tother feature reduction from
11 to 6, making the process more suitable for tiea-application.

To develop an efficient beat classifier, features & be established to
distinguish between different beats. The first glefeatures is extracted from ECG
after the beat detection process. This set consistieatures based on the R-R
interval, the amplitude of points in the beat teatgland amplitudes of points in QRS
template. After the QRS (onset or offset) of ebeht detected is determined, features
based on the QRS width are extracted. The rengnisiet of features is extracted
after the P wave onset of each detected V@ wa determined. This set consists

of features based on the P-R interval [27].

5.1 QRS Segmentation

As QRS complex is the most important feature of E@& it is associated with
ventricular activation. QRS complexes are extractedasis of R-peak identification.
Window size of 64 point is used for QRS extracitentered at R-peaks.

5.2 Wavelet Transform

Only two-level DWT is used because of short lengtlQRS segment. This gives

three sets of wavelet coefficients. These are shovagure 5.1.
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o R
H(z) > H(z?) >

Figure 5.1 Two-level DWT Algorithm a’trous [6]

Primarily QRS complex are used which has zero argsassociated in the

Wavelet Transform at scales 21 and 22 [6] therefiarautilize only these two levels.

5.3 Feature Extraction

Features are extracted from wavelet coefficientapded earlier. Details of features

are:

AC power of original signaqg. This feature measures the power in the original
QRS complex signal.
2 0.2 2
AC power of wavelet coefficiengsAZ, p2 and”o1. This feature measures the
power in each of the sub-bands.
0% sy 0%

AC power of autocorrelation function of wavelet ffiments ~R(#42) “R(2) gnd
2

g, . :
R(PD . This is a measure of coherence in wavelet suioidha

Ratio of minimum to maximum wavelet, 2 and’o:. These features represent
the morphological characteristics of sub-band coiefits and the amount of

change in frequency distribution of the ECG signal.

These features are combined with RR interval tbfgature set given by

2 2 2 2
{ag,azm,aﬁm),rm,am,am),r 0o 0T rf AQRR} for a single beat.

5.4 Normalization

As the features can be on different scales, nomai@dn is necessary to homogenize

all features to a same level. The relation usechdomalization is given by:

- | X X
X; 4an&{}—

X:

j (4.1)
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Where
X . h gh .
. is the |" component of thé" feature vector, with

X .
. i the mean of th” component of feature vector

o, . :
. % variance of th¢" component of feature vectors
The normalization function ranges features to I{1,

5.5 Principle Component Analysis (PCA) Feature

Reduction

Feature reduction is done to reduce classificatiome and to avoid curse of
dimensionality. Feature reduction also increaséopmance in terms of training and

classification times.

PCA Feature Reduction
1.8 T T T

1.6F 8

1.4+ f

1.2+ f

0.8r f

Eigen Values

0.6 8

0.4 * .

0.2 .

0 | | | | * B

Features

Figure 5.2 PCA Feature Reduction

Principal component analysis is a feature reductitethod for achieving
simplification. The method produces new set of afales, called principal
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components. Each principal component is a lineanbioation of the original

variables. All the principal components are orthwgjato each other, so there is no
redundant information. The principal componenta agole form an orthogonal basis
for the space of the data [7]. Figure 5.2 showsRG& feature reduction with some

features and eigen values.
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Chapter 6. ECG Databases

In this work we have used MIT BIH Arrhythmia Dataka from Physionet for

assessing the quality of the algorithms develofpdusionet is a free resource for
open access to everyone. It offers large collestafirecorded biomedical signals and
related open-source software. In this chapter we gibrief description of database

used and its subsets used.

6.1 MIT BIH Arrhythmia Database

Database for ECG came from the Massachusettsutestf Technology, Beth Israel
Hospital (MIT-BIH) arrhythmia database between 1@ns 1979. This database has
48 subjects chosen at random from ~4000 long terofteH recordings. Each

recording is 30 minutes long.

Table 6-1Different Annotations in Used Dataset

Beat Type No. Beats
VF 470

PB 3616
APB 2495
FV&N 774

LBBB 8067

Normal 74716
RBBB 7247
PVC 7058
FN&P 258
Total 104690

Subjects were 25 mean aged from 32 to 89 year2andomen aged from 23 to 89.
The database contains approximately 109,000 armatbkegats of different types.



6.2 Data Sets used

Following Data Sets were used:

1.

Set6 (6 classes with 23200 Samples)

2. Set6 ALL (6 classes with 103199 Samples)
3.
4. Set9 ALL (9 classes with 104701Samples)

Set6 G (6 classes with 103199 Samples used foredL@ae Patient Out)

32



33

Chapter 7. Beat Classification

ECG presents electric activity in heart generate@gdremaker sites. Any incongruity
in this conduction system or pacemaker sites regulthange of normal ECG pattern
which may be harmful. These abnormalities in EC& amay be result of and/or

represent a cardiac disease.

7.1 Classification

For purpose of classification we used prototypeeiadassifiers. While keeping our

focus on prototype based fuzzy classifiers.

7.1.1 Prototype Based Classifiers

This class of classifiers uses exemplar data tssiiaunknown samples. They are
easily adaptable and allow online learning. Thus, prior knowledge about

distribution of data is needed.

7.1.1.1 k - Nearest Neighbor

The Fuzzy k-nearest neighbor (k-NN) is a method wssd for classification, a
modified form of K- NN. It is a supervised / progpe based classification method. K-
Nearest neighbors of unknown sample were selecdiédlly and then class for that
sample was selected by majority voting amongst th€éhe parameters in k-NN
techniques are the number k which determines howynpaototypes are to as the
neighbors, and the distance function, generallyEheidian distance is used.

1if xUc

(X) =
H (¥ 0 if xUc

(7.1)

H() =2 4

(7.2)
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C(x)= arg( mz?[x (44 ( X))j (7.3)

The problem with crisp K-NN is that how near or &aneighbor is does not
matter until it is in k- nearest neighbors, it withve equal weight to other neighbors.
Due to this even if a training sample lies just tnex testing sample but all other
majority nearest neighbors are at a longer distaxarepared, but the class of test
sample will be determine on majority voting in whidistant majority may win.
Another problem with crisp K-NN is that if a tidwsation occurs, the class is assigned
arbitrarily to the lower class label. Moreover igly equal weights to all k- nearest
neighbor prototypes can introduces error, if theneoise in prototype (relative to the
chosen value of K).

7.1.1.2 Fuzzy k - Nearest Neighbor

This technique [5] is based on supervised learnisipg k- nearest neighbor. A
sample is assigned degree of membership valueachf dass based on membership
values of itk nearest neighbors in those classes. Fuzzy K-Nblves ties by using
degree of memberships of neighbors to get degreeenfibership of sample in each
of the classes available. Classification methass shown in Figure 7.1.

In Fuzzy K-NN an unknown sample is assigned menhigets the class most
represented by its K nearest neighbors, while giariuzzy weighting to the distance
of neighbors. Fuzzy K-NN removes the crispness Iprabof Crisp K-NN, and
generally produces more reliable & accurate resDiggiree of membership of sample

xini™ class is given by:

(x) = 1if xOc
H0 if xoc
(7.4)
i - 5[ ||
j=1 X— 1
1 (X) = i (7.5)

S 1
2
A e e
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C(x)= arg( mlhizi;lx (4 ( X))j (7.6)

There are two significant limits of values m.

« m<1: For smaller values of m, distant samples have greatifuence in
classification of an unknown samplFor-1<m<1, as m decreases, t
influence increases exponentiall

« m>1: For larger the values of m, distant samples havéesser influence i
classification. Foil<m< 3 as m increases, the influence of distant san
decreases exponential

* As m approache+w the results of the classifications approach ameadion
of crisp KNN.

The values ok have an effect on noisy data, greater the valik more robust
the classification becomes. But that makes bouesaf classes fuzzy. The sma
values ofk, makes distinct boundaries between classes buteaserobust again
noise. The cross validation was used to choosenaptralues fok andm. Generally,
heuristic techniques are used to choose optk andm, like cross validation or lea\
one out. Another popular approach is to use evaratly algorithms to find optimi

values fork andm.
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Figure 7.1 Showing nearest neighbors [4]
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7.1.1.3 Pruned Weighted Fuzzy k - Nearest Neighbor (PurposeMethodology)

Reducing number of prototype sample to reduce thssification time. This is a

proposed methodology for a systematic reductigoratotypes while maintaining the
classification accuracy.

Proposed Algorithm:

» Classification
o For any unknown point X
o Find k-NN ()J_() using ATRIA

o Evaluate membership values using

=1

H(X) =———
o)

=1

(7.7)
dj = x| 78
o Evaluate weighted firing strengths

M

c(x) = af@(max (s ( X))]
=1 (7.9)

e Training

Selection of border points

For every pointin T,

Find k- nearest neighbors of other class

Add these points to prototype set P

Calculate Class Weights

i _%Exp

O O O O O

W, = 1
* el
| /min{lg[II=1.M}
Exp>1

(7.10)
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) (V) _ 0.517+ 0.4&4 if clasqy) = w
i\Vi)]~ _ |
0.49'% eise

For every point in training set

classify using prototype set P

if any misclassified

Add misclassified point to P (IB2)

Update class weights again on any addition in P

(7.11)

o O O O O

7.1.1.4 Large Margin Nearest Neighbor

This algorithm takes a transformation matrix L arahsforms data such that samples

from different classes push each other away arsdwie classes pull each other.

7.1.2 Parameter Optimization

Parameter optimization was done using followinghiegues:

7.1.2.1 Leave One Out Cross-Validation (LOOCYV)

Leave 10% Out Cross Validations was used to opénpiarameters (k and m) for

nearest neighbor.

7.1.2.2 Convex Optimization

Convex optimization was used to find L (transforim@atmatrix) for Large Margin
Nearest Neighbor. For convex optimization problé&na, local minimum exists, then
it is a global minimum and set of all (global) nmma is convex. If function is strictly
convex, then there exists at most one minimum. fe®retical construction for
convex optimization uses the facts above in contlmnawith notions from convex
analysis such as the Hilbert projection theorera, dbparating hyperplane theorem,

and Farkas's lemma.
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Chapter 8. Results & Discussion

This chapter presents the techniques used to fglatiffierent class of beats in the
ECG. For classification purpose MATLAB distributedmputing toolbox is used, to
done parallel feature extraction.

This data has been previously been used for evatuat [6].In order to
provide stable analysis, mean and standard dewiatiagesults of five runs of each
experiment by randomly varying training and testsagnples, i.e. training and testing
datasets are not fixed as in [6]. Following pararseare used for evaluation purpose:

a. Positive Predictive Value®PV) of each clas®PVis defined by,

c c (8.1)
b. Sensitivity Values %6 of each class. Sensitivity is defined by,

R

Sg=—¢
*TTP+FN,

(8.2)
c. Total Accuracy f) of each class. Total Accuracy is define by,

M
TR,
A — k=1
Ntest (8.3)

d. Geometric Mean of Sensitivity valueS)( given by,

G—EM s )y
i H = (8.4)

Where, TP; is True Positives of classEP. is False Positives in classk\. is
False Negatives in classM is number of classes aseis sensitivity of" class.

Noise in ECG comes from a multitude of sourceg &lectrical interferences,
muscular movement etc. Noise in ECG spans acressighal range (0 to ~40Hz) and
beyond which is electrical interference (~50 to H8}]1 (34)]. The test of robustness
of our system to noise, we tested the system &rdift levels of Gaussian white
noise which effectively models majority of noisepéyg in the ECG. We analyzed

accuracy of the system at different Signal to N&s#ios, defined by:
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2
SNR=10*log| s
. (8.5)
Where 62 ando¢? are the power of the signal and noise respectivdljie
table below shows the effect of noise against p@sproductivity value, sensitivity
and overall classification accuracy. Such robustresnoves need of sophisticated

signal processing techniques for noise removal lilnering system complexity.

8.1 Parameter Optimization Results

Parameter optimization is one of the major taskdendppplying any algorithm. We
cannot get best results from any algorithm (thatnEde boundary limitation of
algorithm), without optimizing its parameters. Faeder optimization is a method to
push any algorithm towards its best limits.

The parameters for Fuzzy and Crisp k-NN were setkasing “Leave 10%
Out Cross Validation”. Parameters optimized fotttiar using this method weke&
m. The parameter k & m are important with respedbath Fuzzy and Crisp k-NN.
They are used in evaluating membership of unkncammpdes.

For Crisp k-NN,k is the parameter which presents the number ofhbeis
used to evaluate an unknown sample. And for Fuzk\k k has the same job and
has an additional parameter m which give seleets ttow much factor should effect
the classification. The effects of varying m areegi in discussion of Fuzzy k-NN in

7.1.1.2. The equation for Fuzzy membership ukig&gm is given below.

K -2
Z:Uu d;m*

=1
#(X) == ——
Z djm—l

j=1

(8.6)

m > 3 Fuzzy k-NN starts to act like crisp k-NN. &eeping -1 <m< 3 &
m # 1. The favorable vale pair fd¢, mis 5, 1.5 respectively. Here on wards, all
results will be taken on the optimized value& ef5 andm = 1.5.

The cross validation results are presented in Tédldelow.
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Table 8-1 Cross validation results for selection & m

m k=1 k=3 k=5
-0.5 99.45 99.27  99.33
0 99.40 99.357 99.11
0.5 99.40 99.19 99.17%
1.5 9931 9941 99.47
2 9943 9941 99.44
25 9945 99.45 99.344
4 9935 99.34 99.27

8.2 Results for Setb

For comparison of work with existing literature t&avas used. This database has

following distribution as shown in Table 8-2:
Table 8-2 Distribution of SET6

Class Number of Samplégs
N 1200
LBBB 1200
RBBB 1200
APB 1500
PVC 1700
PB 1200
Total 23200

The results below present positive Geometric méanSensitivity values and
classification accuracy with their mean and stathddeviations over 5 runs. For
purpose of trainingN/2 samples were selected each time at random fronddtaset
and the remaining samples were used as test sefpdrameters for Fuzzy and crisp
k-NN were optimized using Leave 10% Out Cross \&l@h. The optimized
parameterk = 5 & m = 1.5were used for obtaining results. The sensitiviy dll
beats is approximately equal or greater than ~&9, tetal accuracy ~99.4%.

Using crisp k-NN [6] obtained total accuracy 99.49#th k = 1 without any
noise, which seems to be better than Fuzzy k-NK @&.43% accuracy. Comparison

for noise robustness is given in Table 8-3.
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Data Dist. N LBBB  RBBB PVC PAC PB Total
Nirain 3604.6 2428 2387.2 1132.2 8486 1199.4 11600
Niest 3595.4 2372 2412.8 1167.8 851.4 1200.6 11600
Class Labels Confusion Matrix SEN Mean  SEN Std
N 3546 0 4 0 1 0 99.82 0.09
LBBB 2 2388 9 14 1 0 98.94 0.15
RBBB 2 7 2412 1 3 1 99.50 0.14
PVC 0 10 1 1170 1 0 98.59 0.27
PAC 0 3 0 0 853 0 99.34 0.47
PB 0 1 1 0 0 1169 99.93 0.07
PPV Mean | 99.82 99.00 99.24 99.16 99.11 99.95 99.35
PPV Std 0.11 0.08 0.09 0.24 0.21 0.08 | Total Acc.  99.43

Table 8-4 Noise Robustness Crisp & Fuzzy k-NN Compigon

SNR(dB) Crisp k-NN [6] Fuzzy k-NN
No Noise 99.420.1 99.4%0.03
40 99.4+0.1 99.5+0.01
35 99.30.1 99.5+0.02
30 99.2+0.1 99.5+0.02
25 98.9+0.0 99.4+0.06
20 98.210.2 99.2+0.04
15 95.820.1 98.8+0.12
10 86.320.2 97.4%0.09
5 99.4%0.1 89.60.36

Feature reduction was done using Principle Comptofiealysis (PCA). After

feature reduction 6 out of 11 features were useatjyzring an accuracy of ~99.4%.

Comparison for noise robustness is given in Takde 8

8.3 Results for Set6 ALL

Table 8-5presents positive Geometric Means for iBeityy value, and overall
classification accuracy with their mean and stamd#eviation for the results of 6

classes obtained with 11 features (without usingA\P®ith N/2 samples used for
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training and remaining used for testing out of ltofal04701 beats and Fuzzy k-NN
with k = 5 was used as classifier. The sensitifatyall beats is approximately equal

or greater than ~94 except APB, with total accure@y.6%.

Table 8-5 Set6 ALL Noise Robustness Crisp & Fuzzy-KIN Comparison

SNR(dB) Crisp k-NN [6] Fuzzy k-NN

No Noise 99.4+0.1 99.4+0.03
40 99.4+0.1 99.5+0.01
35 99.3+0.1 99.5+0.02
30 99.2+0.1 99.5+0.02
25 98.9+0.0 99.4+0.06
20 98.2+0.2 99.2+0.04
15 95.840.1 98.8+0.12
10 86.3+0.2 97.4+0.09
5 99.4+0.1 89.6+0.36

While having ~97.6% accuracy, we can see in Takie \Bhere the beats are
getting confused cause of this drop in accuragyssby adding more samples to the

training and testing sets
Table 8-6 Confusion Matrix for FKNN SET6 ALL with n o noise

Data Dist. PB APB LBBB N RBBB  PVC Total

Ntrain 1759 1237 4028 37339 3622 3615 51600

Niest 1857 1258 4039 37377 3625 3443 51599

Class Labels Confusion Matrix 5 runs | SEN Mean SEN std
PB 1820 0 0 1 0 0 99.94 0.00
APB 0 1044 2 173 9 13 83.47 1.15
LBBB 0 0 3747 192 3 26 94.53 0.47
Normal 0 182 178 36797 52 134 98.54 0.05
RBBB 1 6 3 33 3654 10 98.59 0.19
PVC 0 11 33 139 6 3330 94.36 0.28
PPV Mean 99.93 83.11 94.64 98.54 98.30 94.58

PPV Std 0.05 1.11 0.35 0.05 0.14 0.26 Total Acc 97.8

The value of parametek’*was chosen to be 5 through cross validation (leave
10% out). The results show a total accuracy of 6%/with a geometric mean of
~94.7%. Detailed results are shown below in T&bfe
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Table 8-7 Noise Rubustness for Crisp KNN

SNR(dB) Total G. Mean
No Noise 97.5810.04 94.6940.16
40 97.5740.09 94.6810.24
35 97.4940.04 94.4740.20
30 97.40+0.06 94.4310.17
25 97.10+0.05 93.5910.25
20 96.42+0.07 92.1840.27
15 95.31+0.30 89.8910.53
10 92.5240.09 84.47+0.37
5 84.7210.24 68.40+0.68

We now analyze the effects of using Fuzzy KNN (FKNMassifier. The
parameter values df=5 and m=1.5 were chosen through leave 10% out cross-

validation. The results for Fuzzy k-NN based clé#ssiion are shown in Table 8-8.
Table 8-8 Noise Robustness with FKNN

SNR(dB) Total G. Mean
No Noise 97.6310.02 94.7440.11
40 97.59+0.04 94.5610.21
35 97.5240.06 94.4540.17
30 97.31+0.04 94.1840.19
25 97.1140.07 93.65+0.17
20 96.45+0.10 92.2740.28
15 95.3540.26 91.94+0.49
10 92.43+0.08 83.9+0.49
5 84.84+0.18 68.75+0.72

These results show comparable accuracy to crisplkHdbwever Fuzzy k-NN
classifier gives us the membership values of thienawn sample for all possible
classes, using these membership values we carlataleuconfidence metric showing
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the distance between winning and runner-up clagesfidence Metric of'l sample

is given by:

'L[icwinning B 'L[icrunner— up
o ) 100%

DM,
k=1

Conf =(

(8.9)

fth

Where, /Ji%nmng is the membership of” sample in winning class and

is membership in runner-up class.

icrunner—up
Fuzzy Confidence Metric gives flexibility of choagi label from one of the
confusing (i.e. winning and runner-up class labalé¢ attained an accuracy of ~98%
by choosing appropriate label from winning and rruap, if confidence is less than
25%, as shown in Table 8-9.

Table 8-9 Noise Robustness for FKNN using confideadMetric

SNR(dB) Total G. Mean
No Noise 97.9340.03 95.0540.21
40 97.9040.03 95.0310.24
35 97.84+0.07 94.9040.18
30 97.7410.07 94.6910.14
25 97.4140.05 94.0740.23
20 96.9210.02 92.8740.16
15 95.94+0.27 90.48+0.86
10 93.4440.05 84.9510.20
5 86.87+0.17 70.0740.32

Weighted Fuzzy k - NN gives flexibility of handlingnbalance dataset
problem. We attained an accuracy of ~97% by clasgwing, as shown in Table
8-10.
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Table 8-10 Effect of noise on Seté ALL using FWKNNWithout PCA)

Noise Total G. Mearn
No Noise 97.30 95.0Y
40 97.26 95.05
35 97.30 95.04
30 97.10 94.771
25 96.75 94.18
20 96.00 92.96
15 94.96 91.30
10 91.64 85.74
5 83.14 71.13

Weighted Fuzzy k - NN gives flexibility of handlingnbalance dataset
problem. We attained an accuracy of ~97% shownainld 8-11, by class weighting

along with PCA feature reduction.

Table 8-11 Effect of noise on Set6 ALL using FWKNNWith PCA)

Noise Total G. Mean
No Noise 97.35 95.03
40 97.33 94.86
35 97.21 94.94
30 97.13 94.77
25 96.77 94.23
20 96.12 93.05
15 94.84 90.91
10 91.60 85.34
5 83.05 71.13

8.4 Results for Set9

Table below presents positive Geometric Means fems8ivity value, and overall
classification accuracy with their mean and stashddeviation for the results of 9
classes obtained with 11 features (without usingA\P®ith N/2 samples used for
training and remaining used for testing out of ltofal07647 beats and Fuzzy k-NN
with k = 5 was used as classifier. The sensitifatyall beats is approximately equal

or greater than ~94 except APB, with total accure@y.6%.
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Confusion matrix for PKNN Set6 is Table 8-12.

Table 8-12 Confusion Matrix for PKNN SET6

Data Dist VF PB APB FV&N LBBB Normal RBBB PVC FN&P Total
Nirain 233 1784 1265 379 4016 37350 3687 3513  1p4 52351
Nproto 203 121 838 324 1727 5150 1265 1305 112 11045
Niest 237 1832 1230 395 4051 37366 3560 3545 1B4 52350
Class Labelsg Confusion Matrix SEN Mean
VF 195 0 6 1 0 9 0 26 0 82.28
PB 0 1817 0 0 0 1 0 1 13 99.18
APB 2 0 1014 0 2 189 9 14 0 82.44
FV&N 0 0 1 291 1 59 1 42 0 73.67
LBBB 1 1 1 1 3807 205 5 29 1 93.98
Normal 16 0 259 69 206 36558 74 173 11 97.84
RBBB 0 0 6 0 1 31 3515 6 1 98.74
PVC 41 2 14 43 32 166 9 3237 1 91.31
FN&P 0 9 0 1 8 21 4 1 90 67.16
PPV Mean 76.47 99.34 7794 7167 93.84 98.17 97.93.73 76.92

For prototype based classifiers classification thmghly depend on number of
prototypes. Thus, we used pruning for reducing remds prototypes, as shown in
Table 8-13.

Table 8-13 Effect of Noise on PKNN SET9 without PCA

Noise Total Acc. G.Mean REDUC
40 96.78 88.15 0.21
35 96.71 88.63 0.21
30 96.36 86.48 0.22
25 96.22 85.72 0.99
20 95.39 84.58 0.26
15 93.53 77.14 0.31
10 90.36 69.86 0.38
5 81.42 51.22 0.52

With feature reduction the same classifier gaveamngsing total accuracy of
~96.5%, as shown in Table 8-14.
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Table 8-14 Effect of Noise on PKNN SET9 with PCA

Noise Total Acc. G.Mean REDUC
No Noise 96.51 86.67 0.21
40 96.45 87.12 0.21
35 96.45 87.81 0.22
30 96.20 85.17 0.22
25 95.89 84.90 0.23
20 94.94 81.13 0.25
15 92.96 74.22 0.30
10 89.94 69.15 0.38
5 80.53 47.62 0.52

Crisp k-NN resolves ties by giving arbitrary lalbelm one of the tie holders,

to avoid these ties and to get Noise robust systemzy Theory was used along with

k-NN. Using fuzzy for its robustness against praideof crisp k-NN gives us

accuracy of ~97%, as shown in Table 8-15.

Table 8-15 Effect of Noise on FKNN

SNR(dB) Total G. Mear
No Noise 97.04 87.90
40 97.02 87.83
35 96.98 88.11
30 96.84 87.64
25 96.49 85.8(
20 95.71 82.91
15 94.60 79.10
10 91.29 68.57
S 83.44 49.40

Having large number of samples in prototype saireiases time and space

complexity of classification, to resolve these céewjiies pruning of prototype set

was done.

Using pruning with Fuzzy k-NN gives us accuracy~&7%, as shown in

Table 8-16.



Table 8-16 Effect of noise and reduction in prototge samples with PWFKNN

SNR (dB) Total Acc. G Mean of Sensitivity Reductigactor
No Noise 96.74 89.59 0.21
40 96.77 89.35 0.21
35 96.60 89.92 1.01
30 96.51 89.36 0.22
25 96.15 88.40 0.23
20 95.26 85.94 0.26
15 94.27 81.66 0.30
10 90.20 72.19 0.38
5 81.20 57.82 0.52
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Chapter 9. Conclusion & Future Proposals

This project was aimed at design of an arrhythnéasification system for cardiac
arrhythmia with a particular focus on an offlinassification system using ECG.

9.1 Conclusion

For purpose of classification prototype based teples were used, which are Crisp
k-NN, Fuzzy k-NN, Pruned Weighted Fuzzy k-NN. Fallng Table 9-1 shows a

comparison of different techniques used during B@2&ed Arrhythmia recognition.

Table 9-1 Comparison of techniques

Data Set Total Accuracy G. Mean Method
Set6 99.50% 99.40% k-NN
Set6 99.43% 99.35% F k-NN
Set6 ALL 97.60% 94.81% K-NN
Set6 ALL 97.12% 93.77% Drop3 k-NN
Set 6 ALL 97.50% 95.24% W k-NN
Set6 ALL 97.52% 95.05% P k-NN
Set6 ALL 97.33% 94.98% PW k-NN
Set6 ALL 97.63% 94.73% F k-NN
Set6 ALL 97.31% 94.74% PF k-NN
Set6 ALL 97.30% 95.07% WF k-NN
Set6 ALL 97.52% 95.05% P LMNN
Set6 ALL 97.51% 95.03% WLMNN
Set6 ALL 96.86% 92.81% LFDA
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Data Set Total Accuracy G. Mean Method
Set9 97.30% 86.40% P k-NN
Set9 97.04% 87.90% F k-NN
Set9 96.83% 86.20% WF k-NN
Set9 96.74% 89.59% PWF k-NN
Set6 G (LOPO) 89.24% 80.95% PWF k-NN

9.2 Future Proposals

For future work an online or real-time system candesigned for ECG analysis of
single or multiple patients at hospital or even barused for telemedicine services. It
can be interfaced with portable ECG devices (su&chalter meter) with laptops for

purpose of portability. It can be modified into ahaptive system if needed by adding

or removing prototypes from Prototype Set.
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Appendix: Detailed Results

Following Data Sets were used:

1.

a b~ 0N

Setb6 (6 classes with 23200 Samples)

Set6 ALL (6 classes with 103199 Samples)

Set6 G (6 classes with 103199 Samples used foredL@ae Patient Out)
Set9 ALL (9 classes with 104701Samples)

Set9 G (9 classes with 104701Samples used for L@aeePatient Out)



Appendix A. Set 6

Table A-1 Noise Effect on Fuzzy KNN (k=5,m=1.5), whout PCA Feature Reduction

Noi Effect of noise Without PCA Feature Reduction (N, = 11600, N5 = 11600)
oise
PB APB LBBB Normal RBBB PVC Total
99.82 99.00 99.24 99.16 99.11  99.95 99|43
PPV
0.11 0.08 0.09 0.24 0.21 0.08 0.3
No noise
99.82 98.94 99.50 98.59 99.34  99.93 99|35
Sensitivity
0.09 0.15 0.14 0.27 0.47 0.07
99.87 99.12 99.51 99.07 98.85 100.00 99}50
PPV
0.06 0.18 0.08 0.30 0.57 0.00 0.01
40
99.76 99.22 99.41 99.02 99.42 100.00 99}47
Sensitivity
0.06 0.12 0.13 0.24 0.21 0.00
99.89 99.13 99.52 99.05 99.00 100.00 99|52
PPV
0.05 0.22 0.12 0.21 0.31 0.00 0.02
35
99.83 99.21 99.55 98.67 99.49  99.97 99|45
Sensitivity
0.06 0.13 0.11 0.44 0.24 0.04
99.84 99.20 99.34 99.16 99.05 99.97 99|49
PPV
0.10 0.19 0.04 0.22 0.41 0.05 0.02
30
99.84 99.19 99.49 98.65 99.33  99.97 99|41
Sensitivity
0.06 0.11 0.06 0.37 0.14 0.05
99.83 98.87 99.39 98.93 98.95 99.97 99|40
PPV
0.07 0.14 0.14 0.53 0.47 0.05 0.96
25
99.87 98.95 99.38 98.34 99.42  99.95 99|32
Sensitivity
0.05 0.23 0.20 0.18 0.38 0.08
99.80 98.77 98.97 98.54 98.47  99.97 99|21
PPV
0.06 0.25 0.15 0.24 0.38 0.08 0.04
20
99.78 98.42 99.29 98.28 99.12  99.88 99|13
Sensitivity
0.04 0.21 0.20 0.38 0.20 0.05
99.69 98.15 98.25 98.16 98.18 99.92 98|83
PPV
0.10 0.49 0.37 0.08 0.44 0.00 0.12
15
99.64 97.69 98.72 97.91 98.78  99.88 98|77
Sensitivity
0.08 0.32 0.22 0.55 0.08 0.09
98.39 96.96 95.20 97.22 97.62 99.64 97|39
PPV
0.17 0.32 0.43 0.30 0.42 0.19 0.09
10
98.68 95.89 95.83 97.06 98.18 99.37 97|49
Sensitivity
0.22 0.17 0.29 0.58 0.61 0.22
9140 89.11 81.45 93.85 9420 9453 89|63
PPV
0.55 0.62 1.14 0.56 0.80 0.55 0.36
5
9191 89.48 81.39 92.75 93.71  93.73 90|39
Sensitivity
0.34 0.61 1.19 0.57 0.60 0.48




Table A-2 Noise Effect on Fuzzy KNN, with PCA Featrte Reduction

Effect of noise With PCA Feature Reduction (M.n = 11600, Nt = 11600)

Noise
PB APB LBBB Normal RBBB PVC Total
99.78 99.17 99.27 98.80 98.85 99.89  99(39
PPV
0.04 0.13 0.18 0.40 0.40 0.09 0.5
No noise
99.84 98.80 99.39 98.95 99.03 99.93 99|32
Sensitivity
0.05 0.14 0.15 0.15 0.15 0.04
99.83 99.16 99.44 98.85 99.05 100.00 9947
PPV
0.02  0.09 0.09 0.18 0.24 0.00 0.5
40
99.82 99.02 99.60 98.66 99.32 99.98 99|40
Sensitivity
0.10 0.11 0.12 0.09 0.17 0.04
99.83 99.16 99.44 98.85 99.05 100.00 9947
PPV
0.02 0.09 0.09 0.18 0.24 0.00 0.945
35
99.82 99.02 99.60 98.66 99.32 99.98 9940
Sensitivity
0.10 0.11 0.12 0.09 0.17 0.04
99.82 99.21 99.28 98.85 98.94 99.97 99|44
PPV
0.04 0.22 0.28 0.14 0.33 0.05 0.9
30
99.83 98.77 99.49 98.91 99.48 99.97 99|41
Sensitivity
0.09 0.31 0.23 0.20 0.17 0.07
99.83 99.11 99.28 98.80 98.82 99.88 99|40
PPV
0.08 0.21 0.12 0.27 0.28 0.08 0.97
25
99.81 98.85 99.29 98.90 99.41 99.95 99|37
Sensitivity
0.06 0.13 0.25 0.51 0.40 0.05
99.75 99.02 98.99 98.36 98.42 99.91 99|22
PPV
0.08 0.17 0.23 0.41 0.40 0.12 0.4
20
99.76 98.34 99.16 98.88 99.11  99.90 99|19
Sensitivity
0.09 0.11 0.13 0.26 0.20 0.07
99.58 98.10 97.90 98.33 98.06 99.85 98|72
PPV
0.11  0.30 0.35 0.32 0.26 0.16 0.9
15
99.62 97.39 98.49 97.87 98.89 99.83 98|68
Sensitivity
0.09 0.26 0.21 0.51 0.61 0.17
98.34 96.71 95.17 97.26 97.16  99.29 97|26
PPV
0.09 049 0.25 0.48 0.89 0.04 0.14
10
98.58 95.76 95.65 96.72 98.27 99.28 97|37
Sensitivity
0.15 0.30 0.47 0.68 0.42 0.11
91.04 88.82 79.01 94.29 94.09 88.25 88|35
PPV
0.32 0.88 1.05 0.53 1.15 0.82 0.21
5
91.70 88.36 78.92 92.61 93.65 89.18 88|93
Sensitivity
0.53 0.60 0.22 0.39 0.74 1.12
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Appendix B. Set 6 ALL

Table B-1 Effect of Noise on k-NN (k = 5) without EA Feature Reduction
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Effect of noise Without PCA Feature Reduction (N, = 51600, Nyes: = 51599)

Noise (db)
PB APB LBBB Total
No PPV 99.89 82.44 94.01 98.56 97.83 95.05
97.57
Noise  Sensitivity 100.00 83.83 94.88 98.41 98.78 93.96
PPV 99.83 82.87 94.25 98.59 98.42 94.47
40 97.63
Sensitivity 100.00 83.76 95.07 98.48 98.47 94.26
PPV 100.00 82.97 94.27 98.43 97.85 94.56
35 97.48
Sensitivity 99.89 83.43 93.90 98.52 98.30 93.52
PPV 99.95 82.20 94.05 98.36 98.46 93.75
30 97.39
Sensitivity 99.89 82.73 93.26 98.42 98.40 93.86
PPV 99.95 80.79 92.96 98.05 97.44 93.88
25 96.99
Sensitivity 99.79 81.12 92.21 98.17 97.91 93.03
PPV 99.89 79.14 91.36 97.86 96.60 92.10
20 96.46
Sensitivity 99.83 79.51 91.15 97.69 97.98 92.46
PPV 99.83 76.27 88.38 97.22 95.89 91.23
15 95.62
Sensitivity 99.78 75.73 86.79 97.35 97.06 90.92
PPV 99.44 63.91 80.50 95.24 88.03 88.81
10 92.55
Sensitivity 99.38 62.38 79.49 95.47 89.01 87.57
PPV 91.68 43.87 65.15 90.31 62.90 81.02
5 84.81
Sensitivity 90.20 42.16 63.43 91.11 62.30 78.52




Table B-2 Effect of Noise on k-NN (k = 5) with PCA-eature Reduction

Effect of noise With PCA Feature Reduction (N.i,» = 51600, N = 51599)

Noise (db)

PB APB LBBB Normal RBBB PVC Total
PPV 99.94 81.33 94.04 98.46 98.02 94.75

No noise 97.46
Sensitivity 99.83 82.85 94.14 98.43 98.43 93.98
PPV 99.83 82.95 94.67 98.50 98.38 94.15

40 97.56
Sensitivity 100.00 83.68 94.42 98.47 98.20 94.47
PPV 99.95 82.68 94.06 98.33 98.45 94.67

35 97.44
Sensitivity 99.89 82.28 93.59 98.48 98.50 93.78
PPV 99.94 82.81 94.08 98.36 97.87 94.19

30 97.39
Sensitivity 99.94 82.09 93.66 98.45 98.48 93.42
PPV 99.89 78.68 93.62 98.23 97.63 93.57

25 97.10
Sensitivity 100.00 81.43 92.74 98.25 97.87 92.98
PPV 99.83 76.98 91.47 97.85 96.80 92.15

20 96.46
Sensitivity 99.83 76.07 90.42 97.83 98.17 92.67
PPV 99.60 70.83 86.72 96.85 94.47 90.95

15 94.97
Sensitivity 99.16 70.31 85.83 96.92 96.39 89.91
PPV 99.41 63.99 78.97 95.10 89.79 88.77

10 92.48
Sensitivity 99.46 60.79 79.30 95.51 89.00 86.70
PPV 91.59 41.51 63.44 90.29 63.28 82.19

5 84.65
Sensitivity 90.54 39.77 63.41 90.97 62.48 78.59
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Table B-3 Effect of Noise with FKNN with PCA Featue Reduction
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Effect of noise With PCA Feature Reduction (N.i, = 51600, N, = 51599)

Noise (db)
PB APB LBBB Normal RBBB PVC Total

No PPV 99.89+0.07  82.56+0.26  94.04+0.22  98.40+0.07 97.94+0.37  94.14+0.58

97.41+0.07
Noise  Sensitivity =~ 99.85+0.09  83.06+0.52  93.53+0.42  98.40+0.05 98.72+0.15  93.77+0.22
PPV 99.96+0.02  83.11#1.06 93.76+0.17 98.36+0.05 98.02+0.19  93.98+0.28

40 97.37+0.04
Sensitivity ~ 99.89+0.08  82.79+0.88  93.77+0.31  98.38+0.08  98.57+0.25  93.44+0.52
PPV 99.89+0.08  82.80+0.92 94.05+0.39  98.38+0.05 98.07+0.31  93.72+0.31

35 97.37+0.07
Sensitivity ~ 99.94+0.06  83.54+0.59  93.33+0.29  98.36+0.06 98.56+0.09  93.94+0.28
PPV 99.82+0.05  82.67+1.05 93.61+0.35 98.24+0.07 97.94+0.35  93.48+0.50

30 97.22+0.07
Sensitivity ~ 99.89+0.13  81.76+2.13  93.08+0.52  98.32+0.03  98.35+0.26  93.18+0.35
PPV 99.82+0.05  81.54+0.23  92.45+0.57 98.04+0.06 97.64+0.24  93.00+0.74

25 96.90+0.06
Sensitivity ~ 99.88+0.09  80.79+0.93  91.72+0.23  98.13+0.11  98.09+0.12  92.79+0.52
PPV 99.76+0.10  77.49+1.13  90.50+0.66 97.55+0.04 96.72+0.34  91.67+0.60

20 96.14+0.12
Sensitivity ~ 99.76%0.13  76.76+0.54  89.54+0.64 97.70%0.16 97.47+0.17  90.89+0.45
PPV 99.39+0.55  72.17+3.26  84.93+1.54 96.80+0.08  94.55+0.37  90.27+0.69

15 94.79+0.16
Sensitivity ~ 99.49+0.43  69.92+1.86  85.10+0.76  96.84+0.17  95.44+0.34  89.78+0.84
PPV 99.12+0.15  64.82+1.76  78.18+0.90 95.15+0.11  88.65+0.29  87.57+0.29

10 92.30+0.09
Sensitivity ~ 98.95:0.21  61.25+1.74  77.54+0.57  95.35:0.14  89.45+0.59  87.44+0.71
PPV 84.69+0.29  41.96+1.46 62.38+0.58 90.24+0.12 61.32+#0.67 79.62+0.61

5 84.01+0.10
Sensitivity ~ 85.08+0.72  40.83+0.91 62.22+1.30  90.62+0.08  60.31#0.92  78.25+0.79




Table B-4 Effect of Noise with FKNN without PCA Feaure Reduction
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Effect of noise Without PCA Feature Reduction (N, = 51600, N = 51599)

Noise (db)
PB APB LBBB Normal RBBB PVC Total

PPV 99.93£0.05 83.11+1.11 94.65+0.35 98.55+0.05 98.30+0.14 94.58%0.26

No Noise 97.63+0.02
Sensitivity  99.95+0.00 83.47+£1.15 94.53+0.47 98.54+0.05 98.59+0.19 94.36%0.28
PPV 99.91+0.06 83.51+0.68 94.45+0.42 98.48+0.06 98.20+0.04 94.96%0.44

40 97.5940.04
Sensitivity  99.91+0.10 82.83+1.30 94.48+0.21 98.54+0.04 98.63%0.16 94.09+0.49
PPV 99.89+0.07 82.38+1.18 94.60+0.31 98.47+0.05 98.11+0.13 94.38%0.43

35 97.5240.06
Sensitivity  99.97+0.05 82.42+0.55 94.14+0.20 98.48+0.08 98.59+0.20 94.26%0.31
PPV 99.82+0.09 81.56+1.43 93.65+0.40 98.37+0.08 97.99+0.23 93.99+0.21

30 97.3110.04
Sensitivity  99.95#0.05 82.36+0.74 93.57+0.24 98.34+0.09 98.47+0.16 93.54%0.36
PPV 99.91+0.06 81.38+0.89 93.00+0.70 98.21+0.08 97.74+0.22 93.65%0.71

25 97.1140.07
Sensitivity ~ 99.90£0.05 80.79+1.27 93.06+0.27 98.23+0.03 98.44+0.18 92.9040.27
PPV 99.85+0.05 78.53+1.23 91.55+0.16 97.74+0.04 96.92+0.33  92.49+0.37

20 96.4510.10
Sensitivity ~ 99.81+0.15 77.78+0.64 90.12+0.46 97.88+0.08 97.77+0.29 92.1940.21
PPV 99.694£0.39 73.98+1.88 87.08+0.69 97.06+0.12 95.22+0.79 91.87+0.51

15 95.3540.26
Sensitivity  99.67+0.32  72.67+2.59 86.84+0.35 97.21+0.17 96.20+0.60 90.25+0.49
PPV 99.1840.12 63.91+1.31 79.23+0.62 95.16+0.09 88.66+0.33  88.22+0.38

10 92.4310.08
Sensitivity  99.25+#0.14  60.57+0.83  78.20+0.81 95.51+0.07 89.35+0.41 86.98+0.62
PPV 91.46+0.62 41.23+1.30 64.02+0.86 90.53+0.07 63.81+1.37 80.61+0.86

5 84.84+0.18
Sensitivity ~ 91.15+0.72  40.57+1.83  63.42+0.65 91.02+0.17 63.01+1.00 78.53+0.94
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Table B-5 Effect of variation of number of training examples for FKNN without PCA

Effect of variation of number of training examples (N,,i,) Without PCA Feature Reduction

N:rain (Ntest =103199 - Ntrain)
PB APB LBBB Normal RBBB PVC Total
PPV 99.93+0.05  83.11#1.11  94.65+0.35  98.55:0.05  98.300.14  94.58:0.26
51600  Sensitivit 97.6340.02
99.95+0.00  83.47+1.15  94.53+0.47  98.54:0.05  98.59+0.19  94.36:0.28
y
PPV 99.88+0.08  81.85:0.66  93.76£0.31  98.31:0.08  97.80+0.33  93.82:0.43
25800  Sensitivit 97.2740.08
99.93+0.05  81.58+0.63  93.46:0.33  98.35:0.05  98.32+0.23  93.38+0.49
y
PPV 99.89+0.04  79.18+1.18  92.63+0.53  98.07:0.13  97.630.17  93.710.57
12900  Sensitivit 96.92+0.09
99.88+0.03  80.33+0.80  92.13+0.62  98.17+0.05  98.26+0.21  92.130.42
y
PPV 99.76+0.13  79.73+1.23  91.11#0.73  97.91:x0.07  96.85+0.46  92.26+0.96
6450  Sensitivit 96.5540.11
99.57+0.39  77.81+1.05  91.36:0.78  97.90:0.08  97.97+0.49  91.81:0.57
y
PPV 99.67+0.21  75.25+3.73  89.60+1.36  97.39:0.12  96.10£0.94  92.04+1.07
3225  Sensitivit 95.8840.11
99.57+0.26  74.54+2.79  88.31#0.75  97.63:0.13  97.55:0.70  89.98:0.66
y
PPV 99.63+0.10  71.87+3.60  86.91+2.23  96.84+0.18  94.76+1.01  90.48+1.41
1613  Sensitivit 95.0140.26
99.57+0.24  69.99+3.21  85.56+1.58  97.21:0.18  96.37+0.33  87.52+2.31
y
Table B-6 Effect of variation of number of training examples for FKNN with PCA
Effect of variation of number of training examples (N,,,i,) With PCA Feature Reduction (N =
Nirain 103199 - Niyyin)
PB APB LBBB Normal RBBB PVC Total
PPV 99.8940.07  82.56%0.26  94.04+0.22  98.40+0.07  97.94+0.37  94.14+0.58
51600 97.41£0.07
Sensitivity ~ 99.85:0.09  83.06+0.52  93.53+0.42  98.40+0.05  98.72+0.15  93.77+0.22
PPV 99.90£0.03  80.93+1.47  93.22¢0.29  98.24+0.10  97.89+0.14  93.28+0.55
25800 97.1340.07
Sensitivity ~ 99.88+0.05  81.44+1.14  92.63+0.41  98.22+0.07  98.39+0.16  93.48+0.02
PPV 99.80£0.12  80.59+1.76  92.11#¥0.52  97.98+0.05  97.34+0.38  93.05+0.50
12900 96.7940.10
Sensitivity ~ 99.61#0.41  79.27+1.44  91.57+0.37  98.10+0.16  98.11+0.18  92.26+0.30
PPV 99.8240.05  77.44%+2.31  90.55%0.97  97.78+0.05  97.23+0.51  91.96+0.80
6450 96.35£0.09
Sensitivity ~ 99.65:0.40  78.06+3.15  90.44+0.69  97.75+0.11  97.55+0.21  91.84+0.80
PPV 99.5740.28  77.88+3.03  88.63+1.33  97.37+0.16  96.38+0.51  90.73+1.64
3225 95.7840.16
Sensitivity =~ 99.31#0.37  74.99+3.25  87.43+0.85  97.54+0.19  97.48+0.49  90.52+0.81
PPV 99.39+0.06  75.244#3.57  85.26+1.42  96.96+0.21  95.19+0.74  89.88+2.30
1613 95.01£0.18
Sensitivity ~ 99.29:0.32  70.24+2.24  86.38+1.19  97.07+0.18  96.34+0.65  88.27+1.98




Table B-7 Effect of Noise on Pruning FKNN with PCAFeature Reduction
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Noise (dB)

Effect of Noise With PCA Feature Reduction (N;.,i, = 51600, N, = 51599)

Red.
PB APB LBBB Normal RBBB PVvC Accuracy/ GM Fact
act.
99.92 78.88 93.56 98.54 97.62 93.92 97.31
PPV
0.049 0.85 0.30 0.08 0.21 0.32 0.10
No Noise 0.19
99.91 84.46 94.24 98.13 98.78 93.78 94.74
Sensitivity
0.083 1.14 0.40 0.09 0.14 0.20
99.96 78.88 93.39 98.52 97.57 94.16 97.29
PPV
0.025 1.98 0.22 0.07 0.27 0.28 0.03
40 0.19
99.85 83.28 94.70 98.14 98.69 93.55 94.53
Sensitivity
0.14 1.25 0.22 0.09 0.18 0.56
99.92 78.75 93.33 98.52 97.39 93.70 97.23
PPV
0.06 1.39 0.23 0.05 0.09 0.36 0.05
35 0.19
99.88 83.98 94.08 98.06 98.61 94.05 94.62
Sensitivity
0.07 0.62 0.25 0.05 0.19 0.42
99.91 78.14 92.92 98.41 97.49 93.62 97.12
PPV
0.05 1.52 0.52 0.07 0.32 0.43 0.20
30 0.19
99.91 82.80 93.94 98.02 98.51 93.39 94.25
Sensitivity
0.12 1.01 0.46 0.08 0.33 0.55
99.86 77.02 91.76 98.26 97.01 93.11 96.82
PPV
0.06 0.80 0.21 0.05 0.32 0.13 0.06
25 0.20
99.89 81.49 93.04 97.80 98.39 92.90 93.71
Sensitivity
0.07 1.14 0.28 0.05 0.21 0.37
99.89 72.67 89.89 97.78 96.11 91.80 96.04
PPV
0.10 0.63 0.48 0.09 0.22 0.65 0.08
20 0.23
99.73 78.65 90.36 97.31 97.83 91.53 92.28
Sensitivity
0.116 0.86 0.18 0.08 0.26 0.75
99.80 68.37 85.12 97.14 94.05 90.61 94.87
PPV
0.11 3.00 0.88 0.12 0.66 0.59 0.31
15 0.28
99.53 73.40 87.47 96.50 96.32 89.64 90.03
Sensitivity
0.33 1.98 0.24 0.28 0.54 0.62
99.33 57.45 75.66 95.24 85.26 87.21 91.52
PPV
0.17 1.38 0.41 0.09 0.31 0.84 0.07
10 0.36
99.14 61.65 78.70 94.16 90.21 86.28 84.05
Sensitivity
0.17 1.90 0.61 0.07 0.56 0.58
91.60 36.99 59.34 90.34 56.53 79.26 82.91
PPV
0.60 2.32 0.99 0.17 0.59 0.83 0.13
5 0.49
90.24 41.45 64.04 88.43 62.94 77.70 68.53
Sensitivity
0.90 2.20 0.90 0.14 0.58 0.62




Table B-8 Effect of Noise on Pruning FKNN without ZA Feature Reduction
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Effect of Noise Without PCA Feature Reduction (N, = 51600, N, = 51599)

Noise (dB)
PB APB LBBB Normal RBBB PVC Acc Red.
99.93 78.61 93.66 98.51 97.51 94.46 97.32
PPV
0.05 0.68 0.23 0.06 0.33 0.52 0.05
No Noise 0.19
99.86 83.49 94.60 98.17 98.65 93.72 94.58
Sensitivity
0.076 0.98 0.32 0.03 0.14 0.50
99.88 78.77 93.65 98.54 97.55 94.07 97.32
PPV
0.059 0.94 0.52 0.04 0.25 0.52 0.06
40 0.19
99.89 83.50 94.62 98.12 98.70 94.03 94.64
Sensitivity
0.10 0.35 0.27 0.08 0.18 0.31
99.91 77.90 93.21 98.48 97.51 93.63 97.17
PPV
0.03 1.48 0.29 0.04 0.13 0.26 0.08
35 0.19
99.94 83.42 94.30 98.02 98.49 93.67 94.47
Sensitivity
0.04 0.74 0.17 0.08 0.23 0.49
99.93 78.12 93.18 98.39 97.42 93.63 97.12
PPV
0.06 1.63 0.56 0.043 0.14 0.46 0.04
30 0.19
99.82 83.35 93.89 98.04 98.53 93.07 94.28
Sensitivity
0.08 0.94 0.48 0.06 0.07 0.45
99.88 77.31 91.83 98.20 97.06 92.75 96.76
PPV
0.06 0.95 0.31 0.03 0.29 0.38 0.04
25 0.20
99.88 82.57 92.44 97.77 98.31 92.86 93.79
Sensitivity
0.09 0.55 0.21 0.04 0.17 0.21
99.82 74.05 89.83 97.79 96.34 91.87 96.12
PPV
0.088 0.75 0.23 0.12 0.37 0.26 0.09
20 0.23
99.83 78.29 90.77 97.40 97.76 91.40 92.28
Sensitivity
0.08 1.24 0.55 0.06 0.34 0.73
99.68 68.52 85.57 97.10 94.49 90.43 94.91
PPV
0.28 0.74 0.47 0.14 0.59 0.81 0.17
15 0.28
99.68 73.58 86.53 96.58 96.45 90.14 90.04
Sensitivity
0.19 1.90 0.70 0.04 0.44 1.14
99.38 56.74 76.41 95.25 86.13 87.35 91.66
PPV
0.18 1.14 0.28 0.12 0.35 0.72 0.10
10 0.36
98.87 62.85 78.77 94.34 89.69 86.32 84.24
Sensitivity
0.23 1.49 0.56 0.12 0.73 0.45
91.36 37.02 59.78 90.52 56.68 79.38 83.02
PPV
0.60 1.04 0.54 0.13 1.20 0.64 0.10
5 0.50
90.16 43.16 64.58 88.36 63.73 77.80 69.23
Sensitivity

0.99 1.02 1.32 0.17 0.50 0.82




Table B-9 Effect of Noise Pruned Weighted FKNN witiPCA Feature Reduction
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. Effect of Noise With PCA Feature Reduction (N, = 51600, N, = 51599)
Noise (db)
PB APB LBBB Normal RBBB PVC Total Red.
99.76 77.34 93.01 98.73 97.33 93.84 97.30
PPV
0.06 1.36 0.41 0.06 0.40 0.36 0.04
No Noise 0.19
99.92 84.97 95.36 97.94 98.76 94.29 95.07
Sensitivity
0.05 0.30 0.15 0.06 0.25 0.43
99.76 77.12 93.05 98.69 97.49 93.53 97.26
PPV
0.12 1.44 0.18 0.08 0.21 0.56 0.10
40 0.19
99.91 85.16 94.71 97.92 98.90 94.50 95.05
Sensitivity
0.09 1.31 0.31 0.07 0.11 0.32
99.84 77.08 93.03 98.66 97.28 93.21 97.21
PPV
0.05 0.94 0.35 0.07 0.18 0.32 0.10
35 0.19
99.87 84.97 94.60 97.88 98.85 94.26 94.94
Sensitivity
0.06 1.03 0.28 0.06 0.13 0.48
99.77 76.26 92.58 98.63 97.16 93.17 97.10
PPV
0.13 1.08 0.36 0.06 0.35 0.29 0.08
30 0.20
99.94 84.51 94.60 97.80 98.64 94.01 94.77
Sensitivity
0.04 0.63 0.27 0.06 0.23 0.70
99.80 73.94 91.61 98.40 97.27 92.51 96.75
PPV
0.09 0.68 0.40 0.03 0.39 0.20 0.06
25 0.21
99.87 83.50 93.20 97.57 98.51 93.45 94.18
Sensitivity
0.14 0.89 0.31 0.09 0.23 0.29
99.87 70.91 88.95 98.02 95.91 91.37 96.00
PPV
0.10 1.26 0.61 0.01 0.14 0.27 0.08
20 0.23
99.79 80.80 91.34 96.99 98.01 92.20 92.96
Sensitivity
0.10 1.41 0.49 0.13 0.26 0.22
99.83 67.43 85.05 97.46 94.29 90.04 94.96
PPV
0.09 1.90 0.52 0.10 0.45 0.32 0.17
15 0.28
99.61 78.03 87.88 96.26 96.65 91.12 91.30
Sensitivity
0.08 0.76 0.54 0.16 0.40 0.27
99.20 56.18 74.88 95.73 86.09 86.88 91.64
PPV
0.33 1.01 0.44 0.13 1.20 0.16 0.12
10 0.36
99.14 67.15 80.53 93.81 90.30 87.49 85.74
Sensitivity
0.15 0.38 0.77 0.15 0.50 0.62
90.23 36.82 59.82 91.18 56.90 78.63 83.14
PPV
1.11 0.73 0.33 0.17 0.51 0.30 0.12
5 0.50
90.59 47.23 65.72 87.85 65.50 80.06 71.13
Sensitivity
1.05 0.97 1.12 0.16 0.71 0.61

Table B-10 Effect of Noise Pruned Weighted FKNN witout PCA Feature Reduction

Noise (dB) Effect of Noise Without PCA Feature Reduction (N, = 51600, N, = 51599)
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PB APB LBBB Normal RBBB PVC Acc Reduc.
99.85 77.95 93.41 98.70 97.46 93.73 97.35
PPV
No 0.07 0.84 0.49 0.05 0.17 0.33 0.04
0.19
Noise 99.90 84.89 95.07 98.03 98.64 94.48 95.03
Sensitivity
0.04 0.50 0.33 0.09 0.29 0.18
99.83 77.73 93.39 98.66 97.46 94.03 97.33
PPV
0.08 0.72 0.36 0.07 0.27 0.51 0.05
40 0.19
99.87 84.12 95.09 98.05 98.69 94.29 94.86
Sensitivity
0.12 0.49 0.20 0.06 0.20 0.72
99.84 77.08 93.03 98.66 97.28 93.21 97.21
PPV
0.05 0.94 0.35 0.07 0.18 0.32 0.10
35 0.19
99.87 84.97 94.60 97.88 98.85 94.26 94.94
Sensitivity
0.06 1.03 0.28 0.06 0.13 0.48
99.85 76.84 92.74 98.60 97.39 92.95 97.13
PPV
0.11 1.40 0.64 0.07 0.30 0.31 0.09
30 0.20
99.91 84.73 94.32 97.85 98.55 94.11 94.77
Sensitivity
0.06 1.12 0.51 0.13 0.31 0.30
99.87 73.78 91.71 98.41 96.95 92.81 96.77
PPV
0.03 1.01 0.37 0.07 0.41 0.56 0.06
25 0.21
99.88 83.48 93.58 97.56 98.52 93.34 94.23
Sensitivity
0.13 1.26 0.21 0.06 0.15 0.36
99.70 72.03 89.14 98.05 96.29 91.67 96.12
PPV
0.17 1.41 0.65 0.04 0.23 0.28 0.08
20 0.23
99.81 80.78 91.45 97.12 97.87 92.60 93.05
Sensitivity
0.13 0.71 0.32 0.11 0.23 0.32
99.56 66.68 84.72 97.36 94.12 90.29 94.84
PPV
0.43 2.34 0.38 0.12 0.84 0.65 0.25
15 0.28
99.65 76.27 87.75 96.18 96.71 91.00 90.91
Sensitivity
0.25 1.43 0.57 0.19 0.62 0.95
99.14 55.18 75.66 95.62 85.34 87.30 91.60
PPV
0.13 0.98 1.12 0.13 0.97 0.83 0.19
10 0.36
99.02 65.82 80.53 93.87 90.12 86.99 85.34
Sensitivity
0.17 1.20 0.55 0.21 0.52 0.22
89.94 37.03 60.05 91.11 56.69 78.34 83.05
PPV
0.85 2.00 0.75 0.16 0.59 0.26 0.22
5 0.50
90.91 47.06 65.41 87.73 65.79 80.22 71.13
Sensitivity
0.46 1.77 0.79 0.21 0.99 0.83




Table B-11 Effect of Noise on Pruned KNN without P@ Feature Reduction

Effect of Noise Without PCA Feature Reduction (N, = 51600, N, = 51599)

Noise (dB)
PB APB LBBB Normal RBBB PVC Total Reduc.
99.96 78.38 93.47 98.56 97.53 94.16 97.31 0.32
PPV
0.02 2.09 0.17 0.05 0.24 0.17 0.05 0.23
No noise
99.88 83.32 94.97 98.11 98.69 93.74 94.61
Sensitivity
0.10 0.90 0.17 0.11 0.11 0.61
99.94 78.54 93.78 98.53 97.52 93.94 97.30 0.33
PPV
0.04 1.19 0.37 0.03 0.33 0.48 0.07 0.23
40
99.84 83.92 94.35 98.11 98.63 94.21 94.69
Sensitivity
0.11 0.63 0.23 0.08 0.18 0.35
99.91 78.64 93.39 98.50 97.62 93.90 97.27 0.33
PPV
0.06 1.52 0.26 0.06 0.21 0.57 0.05 0.22
35
99.86 83.74 94.35 98.11 98.58 93.67 94.56
Sensitivity
0.18 1.73 0.31 0.03 0.34 0.22
99.89 78.38 92.81 98.40 97.37 93.41 97.08 0.33
PPV
0.08 0.29 0.45 0.07 0.12 0.32 0.05 0.23
30
99.87 82.43 93.86 98.00 98.56 93.34 94.15
Sensitivity
0.09 0.43 0.39 0.03 0.24 0.51
99.91 76.37 92.31 98.23 97.02 92.98 96.80
PPV
0.03 1.17 0.38 0.04 0.45 0.37 0.07 0.35
25
99.82 81.64 93.00 97.83 98.45 92.48 93.66 0.23
Sensitivity
0.07 1.09 0.25 0.10 0.10 0.44
99.85 71.68 89.78 97.80 96.12 91.96 96.05 0.39
PPV
0.10 1.49 0.51 0.07 0.22 0.23 0.12 0.24
20
99.80 77.63 90.91 97.28 97.62 91.75 92.18
Sensitivity
0.10 0.78 0.40 0.16 0.11 0.38
99.74 69.67 85.23 97.13 94.49 90.76 94.94 0.45
PPV
0.28 1.98 0.63 0.15 0.57 0.59 0.24 0.27
15
99.63 73.74 87.10 96.62 96.34 89.92 90.12
Sensitivity
0.15 1.13 0.61 0.17 0.30 0.52
99.08 58.41 75.86 95.37 85.86 86.41 91.61 0.36
10 PPV
99.18 65.86 78.83 94.11 89.99 86.46 85.00
91.33 35.66 60.81 90.60 56.21 78.95 83.03 0.50
5 Sensitivity
90.12 40.87 65.20 88.28 64.25 78.65 68.92
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Table B-12 Effect of Noise on Pruned KNN with PCA Eature Reduction

Effect of Noise With PCA Feature Reduction (N;.,i, = 51600, N, = 51599)

Noise
PB APB LBBB Normal RBBB PVC Total Reduc.
99.89  78.28  93.90 98.55 97.57 94.08 97.33 0.32
PPV
0.04 0.93 0.59 0.06 0.18 0.22 0.05 0.23
No noise
99.89 83.61 94.60 98.15 98.64 93.97 94.65
Sensitivity
0.10 0.53 0.31 0.08 0.21 0.41
99.91 77.44  93.28 98.49 97.60 93.85 97.20 0.32
PPV
0.03 0.59 0.11 0.09 0.27 0.40 0.09 0.22
40
99.94 83.44 94.45 98.05 98.50 93.51 94.48
Sensitivity
0.00 0.67 0.41 0.06 0.12 0.33
99.96 78.58 93.48 98.51 97.42 94.16  97.28 0.32
PPV
0.05 0.89 0.43 0.05 0.23 0.45 0.06 0.22
35
99.87 83.58 94.52 98.11 98.69  93.73 94.58
Sensitivity
0.05 1.08 0.17 0.05 0.18 0.37
99.91 77.58 92.86 98.37 97.53 9329 97.04 0.33
PPV
0.08 0.84 0.54 0.08 0.15 0.37 0.10 0.23
30
99.88 83.21 93.73 97.96 98.40 93.13 94.21
Sensitivity
0.07 0.88 0.50 0.05 0.33 0.48
99.91 76.15 91.79 98.27 97.16 92.82 96.78 0.35
PPV
0.10 1.24 0.20 0.05 0.31 0.14 0.07 0.23
25
99.89 82.60 93.03 97.74 98.37 92.71  93.87
Sensitivity
0.05 0.66 0.22 0.10 0.27 0.50
99.82  72.18  90.07 97.74 96.43 91.61 96.04 0.39
PPV
0.10 0.53 0.66 0.05 0.19 0.81 0.05 0.25
20
99.81 7795 90.35 97.34 97.59  91.63 92.14
Sensitivity
0.11 1.44 0.29 0.11 0.12 0.63
99.62 68.00 85.35 97.12 94.16 90.26 94.834 0.45
PPV
0.42 2.46 1.42 0.23 0.63 0.82 0.42 0.27
15
99.53 7335 86.99 96.48 96.24  90.00 89.98
Sensitivity
0.26 3.52 0.78 0.28 0.64 0.95
PPV 99.44  57.13 76.83 95.25 86.20 87.48 9177 0.36
10
Sensitivity 99.11 60.18 79.48 94.34 90.02 87.38 84.02
PPV 90.40 37.02 59.21 90.64 57.49 79.13  83.03 0.50
5
Sensitivity 90.50 4297 65.35 88.26 64.89 76.81  69.41
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Table B-13 Effect of Noise on Pruned Weighted KNN ithout PCA Feature Reduction

Effect of Noise Without PCA Feature Reduction (N, = 51600, N, = 51599)
Noise
PB APB LBBB Normal RBBB PVC Total Redc Ratio
99.81 77.68 93.34 98.68 97.47 9394 97.33
PPV
0.08 0.42 0.26 0.06 0.45 0.28 0.03
No Noise 0.19
99.81 84.69 9531 98.01 98.68 94.20 94.98
Sensitivity
0.05 1.23 0.24 0.04 0.14 0.39
99.90 78.07 92.90 98.64 97.21 9331 97.21
PPV
0.04 1.31 0.15 0.07 0.15 0.25 0.07
40 0.19
99.88  83.98 94.87 97.91 98.77 9431 94.80
Sensitivity
0.04 1.51 0.40 0.08 0.21 0.38
99.83 77.01 92.83 98.66 97.28 9346 97.21
PPV
0.04 0.75 0.43 0.02 0.24 0.16 0.03
35 0.19
99.86 84.76  94.81 97.91 98.60 94.13  94.87
Sensitivity
0.03 1.25 0.29 0.04 0.25 0.29
99.87 77.28 92.75 98.60 97.34 93.02 97.12
PPV
0.05 1.48 0.36 0.09 0.11 0.22 0.08
30 0.20
99.88  84.99 94.53 97.83 98.68 94.01 94.85
Sensitivity
0.12 0.74 0.47 0.07 0.35 0.32
PPV 99.67 71.87 89.24 98.00 96.25 91.66  96.09
20 0.23
Sensitivity 99.67 80.14 91.67 97.10 97.66 92.61  92.90
PPV 99.78 67.48 84.46 97.39 94.18 90.38 94.88
15 0.28
Sensitivity 99.72 76.37 8791 96.24 96.51 90.89 90.93
PPV 99.12 55.65 76.64 95.71 85.54 87.13 91.70
10 0.36
Sensitivity 99.23 68.00 80.91 93.91 89.98 87.16 8591
PPV 89.63 3941 58.92 91.21 56.41 78.00 83.04
5 0.49
Sensitivity 91.30 49.65 64.97 87.80 64.81 79.78 71.51
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Table B-14 Effect of Noise on Pruned Weighted KNN ith PCA Feature Reduction

Effect of Noise With PCA Feature Reduction (N, = 51600, N, = 51599)
Noise (dB)

PB APB LBBB Normal RBBB PVC Total Ratio

99.89 78.77 93.52  98.64  97.45 93.95 97.35
PPV

0.13 1.28 0.24 0.05 0.29 0.25 0.03
No noise 0.19
99.86 84.37 95.00 98.08 98.78 94.22 94.90

Sensitivity
0.12 0.71 0.31 0.06 0.18 0.31
99.82 78.03 93.39 98.67 97.26 93.53 97.29
PPV
0.08 0.79 0.52 0.05 0.52 0.41 0.06
40 0.19
99.88 84.40 95.11 97.99 98.82 94.03 94.89
Sensitivity
0.08 0.79 0.31 0.07 0.12 0.41
99.80 75.81 93.16 98.63 97.46 93.05 97.15
PPV

0.11 1.29 0.57 0.06 0.29 0.37 0.05
35 0.19
99.85 84.49 94.59 97.85 98.62 94.27 94.80

Sensitivity

0.07 0.64 0.35 0.06 0.09 0.26

99.89 7574 9232 9861 9725 9351  97.09
PPV

0.07 1.60 0.34 0.09 0.25 0.24 0.04
30 0.20
99.90 85.01 94.60 97.81 98.68 93.55 94.79

Sensitivity
0.08 1.38 0.47 0.08 0.06 0.26
99.77 74.88 90.89 98.31 96.93 91.85 96.58
PPV
0.08 1.55 0.39 0.04 0.26 0.35 0.05
25 0.21
99.84  83.57 92.45 97.46 98.32 93.24 93.99
Sensitivity
0.11 0.89 0.12 0.10 0.12 0.51
PPV 99.73 70.41 88.64 97.93 96.30 90.02 95.83
20 0.23
Sensitivity 99.89 81.33 90.81 96.90 97.38 91.51 92.76
PPV 99.72 67.27 81.42 96.92 94.41 90.13 94.27
15 0.28
Sensitivity 99.77 77.60 84.18 95.92 95.53 90.41 90.24
PPV 98.88 58.04 73.66 95.62 86.39 85.55 91.43
10 0.35
Sensitivity 98.88 66.87 79.55 93.78 89.53 87.20 85.30
PPV 82.87 35.73 58.50 90.72 55.98 76.66 82.32
5 0.50

Sensitivity 86.32 46.73 62.98 87.54 61.98 80.09 69.26

Table B-15 Effect of Noise on Pruned KNN using DROPwithout PCA Feature Reduction

Effect of Noise Without PCA Feature Reduction (Ny.i, = 51600, N;.s; = 51599)
Noise (dB)

PB APB LBBB Normal RBBB PVvC Total Reduc]

PPV 99.89 80.82 93.20 98.25 97.75 93.36 97.12
No noise 0.03
Sensitivity 99.84 81.86 94.05 98.23 97.89 99.99 7B3.
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Appendix C. Set 9 ALL

Table C-1 Effect of Noise on Pruned KNN without PCAFeature Reduction
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Effect of Noise Without PCA Feature Reduction (N, = 52351, Nis: = 52350)

Notse VF PB APB FV&N LBBB Normal RBBB PVC FN&P Total Reduc

PPV 78.02 99.72 7895 7247 9319 9838 97.80 92.68 7851 96.78

0 Sensitivity 80.09 99.49 83.00 74.01 9483 9798 98.38 9225 77.87 88.15 o2t
PPV 82.64 99.78 76.34 7422 9351 9838 97.38 9237 80.00 96.71

% Sensitivity 82.99 99.67 84.98 7197 9482 97.83 98.34 9211 79.37 88.63 o2t
PPV 75.52 9945 7735 66.09 9259 9817 9723 9137 88.68 96.36

% Sensitivity 81.25 99.61 84.12 71.01 93.70 97.69 98.34 90.61 68.61 86.48 022
PPV 78.28 99.29 77.28 6422 9229 98.00 9743 9190 77.23 96.22

2 Sensitivity 78.28 99.78 81.19 7246 9325 9760 98.36 91.15 66.67 85.72 099
PPV 76.39 99.62 7448 6447 8889 9753 96.13 90.38 78.76 95.39

20 Sensitivity 79.11 99.19 78.04 64.81 91.06 97.09 97.59 89.39 72.36 84.58 028
PPV 74.49 9841 66.91 4953 8430 96.62 9271 87.73 5859 93.53

1o Sensitivity 75.10 99.28 71.20 57.73 8522 9586 96.71 86.77 46.03 77.14 o3t
PPV 63.71 99.04 5574 43.13 7597 9473 86.23 84.27 46.73 90.36

10 Sensitivity 65.83 98.54 63.28 46.25 77.80 93.81 89.79 82.77 38.46 69.86 038
PPV 58.55 89.84 3549 20.09 5959 89.95 5596 74.70 18.46 8142

> Sensitivity 55.92 90.38 42.46 2247 6324 87.73 63.36 7277 19.67 51.22 052




Table C-2 Effect of Noise on Pruned KNN with PCA Fature Reduction
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Noise Effect of Noise With PCA Feature Reduction (Ny.in = 52351, N = 52350)
VF PB APB  FV&N LBBB Normal RBBB PVC FN&P Total Reduc.
No Noise PPV 76.47 99.34 77.94 7167 93.84 9817 97.18 9173 7692 9651 0.21
SEN 82.28 99.18 8244 73.67 93.98 97.84 9874 9131 67.16 86.67
40 PPV  80.83 99.28 7823 69.89 9294 98.19 97.51 9136 77.78 9645 021
SEN 81.86 99.39 8237 7525 93.98 9775 98.63 91.13 69.42 87.12
35 PPV 7846 9937 77.94 69.95 93.07 9825 97.03 91.52 71.90 9645  0.22
SEN 81.78 99.32 83.97 76.61 93.76 9772 9820 91.07 72.50 87.81
30 PPV 78.48 99.17 77.81 67.90 91.80 98.01 97.26 91.43 7815 9620  0.22
SEN 7848 99.33 8278 67.24 92.81 97.66 9838 91.12 6691 85.17
25 PPV 79.06 98.86 7557 7129 91.56 97.94 96.68 89.85 66.94 9589  0.23
SEN 7940 99.13 80.87 74.13 9219 9739 97.99 90.67 60.90 84.90
20 PPV 7595 9866 73.53 5731 8899 97.36 9539 89.01 6857 9494  0.25
SEN 7347 99.10 77.82 6821 89.66 96.83 97.98 88.15 52.55 81.13
15 PPV 7131 97.97 6552 5335 8351 96.19 9241 8575 4052 9296  0.30
SEN 7490 97.86 6890 52.65 83.62 9576 9528 8531 39.50 74.22
10 PPV 6250 9850 5547 39.80 73.87 9453 8543 8378 4250 89.94 0.38
SEN 65.61 97.53 6233 42.62 7595 93.50 89.78 82.41 40.48 69.15
5 PPV 4898 82.89 3503 1826 61.19 89.53 5295 7254 1278 80.53

0.52

SEN 52,63 83.89 4147 2211 63.05 87.32 60.00 72.02 13.08 47.62




Table C-3 Effect of Noise on FKNN without PCA Featte Reduction
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Effect of Noise Without PCA Feature Reduction (N, = 52351, N, = 52350)

06

02

03

02

06

06

29

07

14

Noise
VF PB APB FV&N LBBB Normal RBBB PVC FN&P Total
80.48 99.66 8354 77.68 94.46 98.27 98.16 92.60 0788. 97.04
PPV
1.94 0.07 0.82 1.72 0.26 0.06 0.19 0.36 3.79 0
No Noise
80.87 99.74 82.07 74.19 94.43 98.38 98.44  92.78 2075. 87.90
Sensitivity
3.14 0.13 1.33 2.37 0.13 0.05 0.09 0.26 1.83
80.04 9959 8284 76.46 94.06 98.30 98.08  93.14 8083. 97.02
PPV
2.87 0.15 1.36 151 0.37 0.08 0.07 0.58 2.80 0
40
82.18 99.77 8355 73.79 94.49 98.33 98.47  92.26 8772. 87.83
Sensitivity
1.87 0.10 0.98 2.78 0.42 0.09 0.12 0.22 4.44
77.42 99.61 8272 77.82 94.21 98.24 98.09 93.08 7833. 96.98
PPV
2.04 0.09 1.36 1.62 0.44 0.04 0.24 0.26 3.06 0
35
83.88 99.71 8295 7361 94.08 98.33 98.43  92.33 5174. 88.11
Sensitivity
1.70 0.05 0.86 2.99 0.31 0.06 0.12 0.25 217
79.81 99.49 8216  73.75 94.35 98.16 97.84  92.46 2586. 96.84
PPV
2.30 0.12 0.70 2.89 0.40 0.10 0.12 0.26 2.37 0
30
82.48 99.71 82.09 7298 93.61 98.24 98.38  92.21 2274. 87.64
Sensitivity
2.26 0.10 0.97 2.26 0.43 0.09 0.05 0.69 1.75
79.46 99.41 8045 73.72 92.70 98.00 97.69 9196 8080. 96.49
PPV
2.83 0.15 2.01 2.74 0.54 0.06 0.27 0.53 3.45 0
25
80.69 99.69 81.74  70.29 92.95 98.01 98.25 91.29 696. 85.80
Sensitivity
1.67 0.03 151 0.58 0.31 0.10 0.19 0.55 2.34
7792 99.29 7784 66.65 90.72 97.49 96.95 90.69 5279. 95.71
PPV
217 0.14 1.23 2.75 0.44 0.12 0.36 0.56 452 0
20
76.83 9959 77.73  68.49 90.30 97.62 97.56  89.85 8058. 82.91
Sensitivity
1.63 0.14 0.88 1.36 0.65 0.04 0.26 0.61 281
75.67 99.29 74.09 62.14 87.62 96.75 95.07  89.07 9069. 94.60
PPV
3.09 0.20 2.08 3.39 0.78 0.21 0.65 0.54 5.64 0
15
75.42 99.34 7205 60.82 86.64 97.00 96.34  88.40 5851. 79.10
Sensitivity
1.82 0.26 243 2.85 0.60 0.20 0.47 0.79 5.20
66.24 98.76 63.47  47.30 78.31 94.68 88.78  85.03 2254. 91.29
PPV
2.32 0.33 0.99 3.53 0.89 0.15 0.71 0.65 4.19 0
10
65.41 99.06 60.32 43.58 78.43 95.09 89.33  83.70 2635. 68.57
Sensitivity
3.67 0.19 1.76 3.10 1.01 0.13 0.72 0.49 5.90
56.65 91.04 41.48 2435 63.32 90.05 63.34  77.15 7516. 83.44
PPV
3.50 0.54 0.98 1.80 0.66 0.12 0.70 0.90 242 0
5
54.62 90.99 4118 23.76 63.56 90.39 63.74  74.43 2313. 49.40
Sensitivity
5.00 0.43 141 1.74 0.67 0.14 1.10 0.86 2.02
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Table C-4 Effect of Noise on FKNN with PCA FeatureReduction

Effect of Noise With PCA Feature Reduction (Ni.ain = 52351, N, = 52350)

Noise
VF PB APB FV&N LBBB Normal RBBB PVC FN&P Tota
79.51 99.43 8251 77.08 93.95 98.15 98.00 92.30 4878.96.82
PPV
252 023 014 1.48 0.60 0.04 0.25 0.44 351 0
No Noise
79.75 99.36 8234 73.66 93.78 98.25 98.43  92.03 1170. 86.85
Sensitivity
189 019 0.70 1.47 0.17 0.03 0.21 0.50 4.25
80.23 99.22 82.07 7419 93.68 98.16 97.68  92.57 2479.96.76
PPV
161 012 1.16 1.65 0.45 0.02 0.18 0.47 2.32 0
40
78.98 99.32 82.63 7430 93.65 98.19 98.69 91.73 1366. 86.28
Sensitivity
284 023 0.78 231 0.35 0.02 0.25 0.65 2.72
80.34 99.31 8223 7525 93.65 98.18 97.94 92.09 6776.96.77
PPV
189 012 093 3.47 0.09 0.02 0.16 0.22 4.60 0
35
79.92 99.34 8260 74.62 93.33 98.19 98.50 92.16 6068. 86.79
Sensitivity
352 024 061 2.09 0.45 0.07 0.13 0.29 4.68
80.41 99.20 8154 74.01 93.49 98.04 97.87  91.73 0379. 96.60
PPV
2.07 0.10 1.22 0.72 0.29 0.07 0.30 0.64 4.78 0
30
80.04 99.39 82.73 72.01 92.90 98.10 98.31 91.70 9363. 85.68
Sensitivity
0.68 0.07 1.16 1.50 0.16 0.10 0.15 0.53 3.84
77.07 99.03 8194 7356 9212 97.83 97.54  91.51 9376. 96.32
PPV
3.77 031 1.32 271 0.51 0.11 0.30 0.46 251 0
25
77.33 99.35 80.77 69.95 91.99 97.98 98.30 91.03 1159. 83.94
Sensitivity
192 021 1.38 2.30 0.56 0.13 0.15 0.32 5.68
7479 98.72 76.64 67.54  90.08 97.32 96.77 89.20 1169. 95.37
PPV
460 0.09 1.02 2.78 0.31 0.03 0.27 0.58 5.93 0
20
76.41 99.23 76.67 64.50 89.57 97.37 97.41 89.30 1755.81.40
Sensitivity
132 021 0.73 2.65 0.29 0.06 0.24 0.36 3.85
73.60 9853 71.71 5894 85.62 96.46 94.34 87.66 8561.93.95
PPV
359 082 282 1.07 1.58 0.23 0.90 077 1205 O
15
7256 98.74 70.66 56.86 84.78 96.63 95.56  87.43 4845.76.49
Sensitivity
138 081 233 3.07 121 0.15 0.44 1.00 5.19
63.53 98.12 63.15 47.20 77.90 94.59 88.89 84.45 1547.91.07
PPV
2.06 0.40 1.20 247 0.44 0.08 0.09 0.42 5.27 0
10
62.15 98.33 61.13 46.20 77.63 94.98 89.01 82.98 3835.68.51
Sensitivity
314 0.29 145 1.97 0.35 0.10 0.30 0.70 1.98
57.28 83.98 4237 2054 61.68 89.75 61.30 75.38 1514.82.58
PPV
442  0.90 1.33 1.38 0.64 0.15 0.61 0.38 2.35 0
5
52.88 84.04 40.43 21.03 63.07 90.03 60.35  73.99 0412.47.16
Sensitivity
228 0.96 1.76 2.16 0.82 0.24 0.88 0.54 3.27
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Table C-5 Effect of Noise on Pruned Weighted KNN whout PCA Feature Reduction

Effect of Noise Without PCA Feature Reduction (Ni.ain = 52351, N = 52350)

Noise
PB APB LBBB Normal RBBB PVC Total
99.76 77.34 93.01 98.73 97.33 93.84 97.30
PPV
0.06 1.36 0.41 0.06 0.40 0.36 0.04
No Noise
99.92 84.97 95.36 97.94 98.76 94.29 95.07
Sensitivity
0.05 0.30 0.15 0.06 0.25 0.43
99.76 77.12 93.05 98.69 97.49 93.53 97.26
PPV
0.12 1.44 0.18 0.08 0.21 0.56 0.10
40
99.91 85.16 94.71 97.92 98.90 94.50 95.05
Sensitivity
0.09 131 0.31 0.07 0.11 0.32
99.88 77.90 93.24 98.68 97.52 93.42 97.30
PPV
0.06 1.22 0.52 0.07 0.14 0.31 0.07
35
99.89 85.25 94.88 97.98 98.69 94.33 95.04
Sensitivity
0.07 0.63 0.44 0.08 0.29 0.30
99.77 76.26 92.58 98.63 97.16 93.17 97.10
PPV
0.13 1.08 0.36 0.06 0.35 0.29 0.08
30
99.94 84.51 94.60 97.80 98.64 94.01 94.77
Sensitivity
0.04 0.63 0.27 0.06 0.23 0.70
99.80 73.94 91.61 98.40 97.27 92,51 96.75
PPV
0.09 0.68 0.40 0.03 0.39 0.20 0.06
25
99.87 83.50 93.20 97.57 98.51 93.45 94.18
Sensitivity
0.14 0.89 0.31 0.09 0.23 0.29
99.87 70.91 88.95 98.02 95.91 91.37 96.00
PPV
0.10 1.26 0.61 0.01 0.14 0.27 0.08
20
99.79 80.80 91.34 96.99 98.01 92.20 92.96
Sensitivity
0.10 141 0.49 0.13 0.26 0.22
99.83 67.43 85.05 97.46 94.29 90.04 94.96
PPV
0.09 1.90 0.52 0.10 0.45 0.32 0.17
15
99.61 78.03 87.88 96.26 96.65 91.12 91.30
Sensitivity
0.08 0.76 0.54 0.16 0.40 0.27
99.20 56.18 74.88 95.73 86.09 86.88 91.64
PPV
0.33 1.01 0.44 0.13 1.20 0.16 0.12
10
99.14 67.15 80.53 93.81 90.30 87.49 85.74
Sensitivity
0.15 0.38 0.77 0.15 0.50 0.62
90.23 36.82 59.82 91.18 56.90 78.63 83.14
PPV
111 0.73 0.33 0.17 0.51 0.30 0.12
5
90.59 47.23 65.72 87.85 65.50 80.06 71.13
Sensitivity
1.05 0.97 1.12 0.16 0.71 0.61
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Table C-6 Effect of Noise on Pruned Weighted KNN wth PCA Feature Reduction
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Effect of Noise With PCA Feature Reduction (N;.,i, = 52351, N.; = 52350)

Noise
PB APB LBBB Normal RBBB PVC Total
99.85 77.95 93.41 98.70 97.46 93.73 97.34
PPV
0.07 0.84 0.49 0.05 0.17 0.33 0.04
No Noise
99.90 84.89 95.07 98.03 98.64 94.48 95.03
Sensitivity
0.04 0.50 0.33 0.09 0.29 0.18
99.83 77.73 93.39 98.66 97.46 94.03 97.33
PPV
0.08 0.72 0.36 0.07 0.27 0.51 0.05
40
99.87 84.12 95.09 98.05 98.69 94.29 94.86
Sensitivity
0.12 0.49 0.20 0.06 0.20 0.72
99.84 77.08 93.03 98.66 97.28 93.21 97.21
PPV
0.05 0.94 0.35 0.07 0.18 0.32 0.10
35
99.87 84.97 94.60 97.88 98.85 94.26 94.94
Sensitivity
0.06 1.03 0.28 0.06 0.13 0.48
99.85 76.84 92.74 98.60 97.39 92.95 97.13
PPV
0.11 1.40 0.64 0.07 0.30 0.31 0.09
30
99.91 84.73 94.32 97.85 98.55 94.11 94.71
Sensitivity
0.06 1.12 0.51 0.13 0.31 0.30
99.87 73.78 91.71 98.41 96.95 92.81 96.71
PPV
0.03 1.01 0.37 0.07 041 0.56 0.06
25
99.88 83.48 93.58 97.56 98.52 93.34 94.23
Sensitivity
0.13 1.26 0.21 0.06 0.15 0.36
99.70 72.03 89.14 98.05 96.29 91.67 96.17
PPV
0.17 141 0.65 0.04 0.23 0.28 0.08
20
99.81 80.78 91.45 97.12 97.87 92.60 93.05
Sensitivity
0.13 0.71 0.32 0.11 0.23 0.32
99.56 66.68 84.72 97.36 94.12 90.29 94.84
PPV
0.43 2.34 0.38 0.12 0.84 0.65 0.25
15
99.65 76.27 87.75 96.18 96.71 91.00 90.91
Sensitivity
0.25 143 0.57 0.19 0.62 0.95
99.14 55.18 75.66 95.62 85.34 87.30 91.6(
PPV
0.13 0.98 1.12 0.13 0.97 0.83 0.19
10
99.02 65.82 80.53 93.87 90.12 86.99 85.34
Sensitivity
0.17 1.20 0.55 0.21 0.52 0.22
89.94 37.03 60.05 91.11 56.69 78.34 83.01
PPV
0.85 2.00 0.75 0.16 0.59 0.26 0.22
5
90.91 47.06 65.41 87.73 65.79 80.22 71.13
Sensitivity
0.46 1.77 0.79 0.21 0.99 0.83




Table C-7 Effect of Noise on Pruned Weighted FKNN uthout PCA Feature Reduction

76

Effect of Noise Without PCA Feature Reduction (Ny.ain = 52351, N = 52350)

Noise
VF PB APB FV&N LBBB Normal RBBB PvC FN&P  Total Reduc.

PPV 68.87 99.55 79.77 74.77 92.48 98.52 97.27 93.07 80.47 96.74

No Noise 0.21
Sensitivity 90.04 99.49 8434 76.56 94.79 97.84 98.38 92.34 76.30 89.59
PPV 71.84 99.62 76.61 67.94 93.73 98.59 97.57 92.58 87.76 96.77

° Sensitivity 85.78 99.84 85.43 82.79 95.24 97.73 98.68 91.85 71.07 89.35 o2
PPV 7232 99.72 76.54 69.35 93.10 98.53 97.32 9236 78.86 96.60

3 Sensitivity 87.08 99.50 85.11 78.96 94.90 97.55 98.78 92.23 7823 89.92 Lot
PPV 70.74 99.56 75.02 70.12 92.69 98.48 97.54 9196 80.33 96.51

3 Sensitivity 84.51 99.72 86.14 78.44 94.56 97.48 98.35 9190 76.56 89.36 022
PPV 7093 99.52 7459 6351 91.66 98.33 97.01 90.75 83.62 96.15

2 Sensitivity 88.36 99.73 83.13 7444 9374 97.27 98.18 91.22 74.05 88.40 02
PPV 67.71 99.35 70.47 56.98 88.89 97.87 96.31 90.33 69.52 95.26

20 Sensitivity 90.76 99.62 80.78 70.99 90.85 96.64 97.58 89.93 64.04 85.94 026
PPV 68.20 99.45 71.01 49.89 84.68 97.38 9432 88.28 61.74 94.27

1 Sensitivity 75.74 99.18 78.04 63.19 88.24 95.98 96.97 88.96 59.66 81.66 030
PPV 63.08 98.40 56.89 39.21 75.11 95.23 86.23 83.77 27.64 90.20

10 Sensitivity 73.33  98.51 6829 48.89 79.69 93.12 89.86 83.11 39.86 72.19 038

5 PPV 48.37 89.70 37.40 16.24 61.53 91.13 56.23 7345 9.40 81.20 052

Sensitivity 64.35 89.10 48.09 26.03 65.32 86.44 66.48 74.65 3590 57.82




Table C-8 Effect of Noise on Pruned Weighted FKNN ith PCA Feature Reduction
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Effect of Noise Without PCA Feature Reduction (Ni.ain = 52351, N = 52350)

Notse VF PB APB FV&N LBBB Normal RBBB PVC FN&P Total Redu
No PPV 7158 99.67 78.02 69.61 93.27 98.62 97.51 93.81.15 96.83

Noise Sensitivity  88.70 99.73 8596 76.56 94.96 97.81 688. 92.81 73.88 89.42 o2t
PPV 73.09 99.38 76.34 72.67 93.44 98.58 97.45 92.38.69 96.72

40 Sensitivity  90.16 99.44 84.13 78.80 94.63 97.75 598. 92.56 7559 89.79 100
PPV 72.01 9951 76.06 69.05 92.82 98.58 97.41 92.1M.31 96.63

% Sensitivity  88.13 99.40 85.02 78.68 94.97 97.56 698. 92.47 7244 89.24 022
PPV 73.81 99.46 75.98 70.09 93.42 98.18 97.51 91.8R.76 96.38

%0 Sensitivity 88,57 99.73 8255 7557  93.42 97.64 3B8. 91.19 78.69 89.12 o2t
PPV 68.38 99.21 75.02 66.17 92.32 98.19 97.22 90.83.11 96.11

2 Sensitivity  86.92 99.33 8255 70.74  93.33 97.33 298. 91.90 6541 86.48 023
PPV 68.11 99.27 72.04 57.24 89.26 97.97 96.21 89.9®.73 95.38

20 Sensitivity  86.86 99.27 8140 70.92 91.50 96.73 987. 90.21 61.54 85.32 026
PPV 65.14 99.77 66.88 51.62  85.63 97.06 94.05 88.4B.97 93.99

o Sensitivity 8222 9949 77.27 58.87 86.59 95.96 087. 88.05 56.74 80.98 0:30
PPV 59.79 98.70 54.60 41.29 75.80 95.31 85.92 84.91.48 90.37

10 Sensitivity 75.00 98.81 66.61 50.00 79.51 93.27 1B0. 83.93 4180 72.87 038
PPV 4756 89.86 36.34 19.81 59.22 90.77 56.56 74.7317 80.91

° Sensitivity 61.09 89.66 46.68 27.58 64.39 86.35 684. 76.03 24.43 55.13 052




Table C-9 Effect of Random Data Reduction on FKNN vthout PCA
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train

Effect of Data Reduction Without PCA Feature Reduction (N;e; = 104701 - Ny.4in)

VF PB APB FV&N LBBB Normal RBBB PVC FN&P Tota
80.48 99.66 83.54 77.68 94.46 98.27 98.16 92.60 0788.97.04
PPV
194 0.07 0.82 1.72 0.26 0.06 0.19 0.36 3.79 0
52351
80.87 99.74 82.07 7419 9443 98.38 98.44  92.78 2075.87.90
Sensitivity
3.14 0.13 1.33 2.37 0.13 0.05 0.09 0.26 1.83
77.80 99.61 8237 76.39 93.46 98.06 97.85 92.15 6182.96.71
PPV
257 015 124 0.32 0.36 0.05 0.09 0.33 3.09 0
26176
79.32 99.63 81.31 69.93 93.50 98.23 98.32  91.69 3068. 85.88
Sensitivity
203 011 1.18 1.29 0.35 0.03 0.09 0.20 412
7355 99.43 7939 7116 9251 97.92 97.36  91.58 4284.96.31
PPV
237 015 0.83 2.87 0.51 0.07 0.40 0.30 4.65 0
13088
76.64 99.68 80.79 70.62 92.37 97.96 98.36  90.38 6662. 84.50
Sensitivity
261 0.10 1.03 221 0.18 0.09 0.14 0.73 391
70.14 99.09 79.23 67.57 9081 97.50 97.17 90.63 6279.95.75
PPV
717 030 247 491 1.06 0.10 0.31 0.88 6.53 0
6544
72.11 99.60 7757 67.24 90.39 97.80 98.20 88.39 8752.81.11
Sensitivity
893 0.21 124 6.25 0.63 0.24 0.26 0.85 4.98
67.31 98.81 76.67 6557 88.93 97.09 96.09 89.34 4981.95.08
PPV
6.16 048 270 2.02 1.01 0.12 0.53 1.22 8.27 0
3272
63.46 99.12 74.16 64.08 88.69 97.46 97.69 87.23 7744.77.30
Sensitivity
731 040 1.69 6.74 0.74 0.31 0.23 1.00 10.22
60.72 98.36 71.00 57.88 85.30 96.66 95.32 85.92 1831.93.99
PPV
6.65 022 240 7.82 0.93 0.26 0.52 2.18 8.67 0
1636
50.44 99.31 7285 50.09 86.81 96.78 96.98 84.23 0535. 70.67
Sensitivity
1098 030 3.74 8.67 0.73 0.26 0.49 242 9.92




Table C-10 Effect of Random Data Reduction on FKNNvith PCA

Effect of Data Reduction With PCA Feature Reduction (Nies; = 104701 - N.in)

N train
VF PB APB FV&N LBBB Normal RBBB PVC FN&P Tota
79.51 9943 8251 77.08 93.95 98.15 98.00 92.30 4878.96.82
PPV
252 023 014 1.48 0.60 0.04 0.25 0.44 351 0
52351
79.75 99.36 8234 7366 93.78 98.25 98.43 92.03 1170. 86.85
Sensitivity
189 019 0.70 1.47 0.17 0.03 0.21 0.50 4.25
76.21 99.09 81.02 76.26 92.84 97.93 97.60 91.91 9579. 96.47
PPV
2,67 0.23 1.22 2.57 0.23 0.03 0.29 0.26 6.22 0
26176
78.99 99.44 81.00 71.02 9240 98.08 98.27 91.37 7360. 84.66
Sensitivity
212 036 0.77 1.38 0.42 0.03 0.21 0.50 4.20
7252 99.09 80.48 70.14 9194 97.72 97.07 90.94 6574.96.06
PPV
222 011 1.61 1.83 0.50 0.11 0.12 0.56 6.49 0
13088
7440 99.36 79.34 68.72 91.09 97.88 98.21 90.36 1857.82.77
Sensitivity
381 0.38 1.13 3.67 0.77 0.08 0.22 0.71 5.36
69.97 98.86 78.48 68.39 90.12 97.41 96.91 89.72 4980. 95.53
PPV
237 024 1.96 7.24 0.60 0.10 0.44 0.38 2.90 0
6544
68.31 99.32 78.97 6729 8931 97.61 97.82  88.98 0046. 79.43
Sensitivity
425 040 0.89 5.11 0.75 0.23 0.45 0.76 7.54
64.04 98.25 7594 65.13 88.73 97.05 95.32  88.41 3180. 94.86
PPV
6.75  0.47 151 4.42 0.93 0.21 0.51 0.60 1119 QO
3272
65.28 98.97 75.37 60.50 87.60 97.31 97.50 87.10 3139.75.92
Sensitivity
482 094 295 6.76 1.38 0.19 0.39 0.86 5.70
57.34 98.65 76.21 5429 86.45 96.53 94.07 85.74 0853.94.00
PPV
456 048 1.49 9.63 191 0.31 0.76 0.81 3146 O
1636
56.38 98.98 70.41 4450 85.89 96.95 96.22 85.92 6528.68.79
Sensitivity
728 071 3.68 6.32 1.49 0.23 1.28 175 1741
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Appendix D. Set 6 G

Table D-1 Leave One Patient Out with Pruned Weighte FKNN without PCA

80

Patient Leave One Out — without PCA Feature Reduction

Noise
PB APB LBBB Normal RBBB PVC Total Reduction
No
PPV 26.96 82.20 95.72 99.33 98.27 96.51 89.18 0.19
noise
Sensitivity 100 58.48 76.22 92.51 81.51 81.96 80.66
Table D-2 Leave One Patient Out with Pruned Weightg FKNN with PCA
Noi Patient Leave One Out — with PCA Feature Reduction
oise
PB APB LBBB Normal RBBB PVvC Total Reduc.
No PPV 80.49 95.31 99.27 98.26 96.12 89.06 80.49
noise 0.19
Sensitivity 58.72 75.54 92.40 81.70 81.79 80.59 58.72




