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he understanding of protein interactions with other molecules and ions through the identification 

of the binding interfaces involved in them, is of critical importance in biology and medicine. In this 

research exam, the focus is on developing a taxonomy of protein binding problems and on 

computational approaches for identifying different types of protein interfaces involved in them.  In 

particular, four different types of protein interfaces are considered: protein-protein, protein-nucleic acid 

(DNA & RNA) and protein-metal ions. Similarities and differences in the nature and characteristics of 

binding interfaces in these protein interactions are discussed and a review of various computational 

methods for their identification is presented. 
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1 Introduction 
roteomics is the study of structure and function of proteins and it has emerged as a very 

important branch of biology with strong linkages to other branches of science owing to the vast 

variety of problems being studied in it. Proteins are of particular interest to biologists because 

they form the functional backbone of innumerable biologically important processes. The role proteins 

play in cellular functions can be appreciated by considering that approximately 50% of the dry weight of 

the human body is protein [1]. Another example that illustrates the importance of proteins is that of 

human blood which consists of red and white blood cells. 92% of the dry weight of all red blood cells is a 

protein called hemoglobin [2]. Hemoglobin gives the blood its distinct red color and is involved in the 

transfer of oxygen to cells which is absolutely critical for survival. Other functions of proteins include but 

are not limited to: enzymatic processing, cell signaling, transportation, immunological responses, 

muscular contractions, hormonal processes, structural stability, gene expression control [3]. Almost all 

protein functions are possible only through the interaction or binding of proteins with other molecules 

such as other proteins, nucleic acids, ligands and metal ions. For example, the ability of hemoglobin to 

bind to iron allows it to transport oxygen.  

Study of protein binding is important in understanding protein function and disease mechanisms. It is 

also important for drug design, discovery and effectiveness studies. When proteins bind other molecules 

or ions, they do so at specific interfaces called binding sites on the proteins. These interfaces are the 

focus of this research exam. In particular, it discusses different approaches for computational prediction 

of binding sites on proteins in their interactions with the following:  

1. Other proteins 

Proteins can bind to other proteins resulting in protein-protein interactions or protein 

complexes. The problem of identifying protein-protein binding interfaces is examined in 

relatively more detail in this research exam in comparison to other types of interfaces. 

2. Nucleic Acids 

Specific methods for prediction of binding interfaces between proteins and nucleic acids 

(Ribonucleic acid (RNA) and Deoxyribonucleic acid (DNA)) molecules are also considered. Of 

particular interest in this area are the so called transcription factor proteins which bind to DNA 

and regulate the process of transcription. Transcription is the process through which the DNA 

sequence of a gene is expressed as RNA. In the context of nucleic acids, binding sites on both the 

binding protein and the nucleic acid sequence are of interest to biologists. In this exam, we 

discuss computational prediction approaches for both kinds of binding sites.  

3. Ligands and Metal Ions 

Ligands are substances (usually small molecules) that bind to a biomolecule such as a protein. 

Examples of ligands include lipids, nucleic acids or drug-like molecules such as penicillin. This 

research  exam targets specific methods that predict the binding interfaces of proteins to metal 

ions such as iron or zinc.  

The rest of the research exam is organized as follows: Section-2 details the biological basis of protein 

interactions and interfaces. Such information is critical to understanding how proteins interact and what 
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kind of features can be used to predict interfaces involved in such interactions. It also renders more 

motivation for developing automated binding site prediction techniques for protein interactions. 

Section-3 presents a detailed view about the specific nature of different types of protein interactions 

and interfaces listed above. It explains a number of existing techniques used for predicting interfaces in 

different types of interactions. The methods discussed in section-3 have been selected on the basis of 

their accuracy and conceptual novelty. Shortcomings of different methods are also detailed in this 

section. Section-4 identifies general issues and open problems in the field.  

2 Nature of protein binding interfaces 
Proteins are composed of one or more polypeptide chains having a complex three dimensional 

structure. Proteins consist of an arbitrary-length sequence of 20 amino acids. The structure of a protein 

can be viewed at four different levels (primary, secondary, tertiary and quaternary)  as shown in Figure 

1. This figure also illustrates the concepts of domains and motifs in proteins. 

 
 

 

 
 

(a) (d) 

 
 

(b) (c) (e) 
Figure 1 Different concepts related to the structure of a protein. Images are taken from the Protein Data Bank (PDB) [4]. (a)  Primary structure 
of the protein Calmodulin. Primary structure is the sequence of amino acids (or residues) of a protein. The amino acids are held together by 
peptide bonds (not shown) and as a consequence a protein is sometimes called a polypeptide. (b) The secondary and tertiary structures of 
Calmodulin (PDB ID: 1CLL). Neighboring amino acids in the protein sequence interact with one another through hydrogen bonds (not shown) 
and give rise to secondary structures such as α-helices,  -sheets and loops shown in red, yellow and off-white, respectively. Secondary 
structures in a protein chain arrange themselves in a configuration called the tertiary structure of the protein. Folding of the protein into its 
tertiary structure allows residues that are not sequence neighbors to come close to each other spatially. Note that all residues in the tertiary 
structure are linked to one another and this allows a protein chain to be represented by its sequence. (c) Multiple protein chains can interact 
with one another to give rise to the quaternary structure of a protein (also called a protein complex). Shown in (c) is the quaternary structure of 
hemoglobin which consists of 4 polypeptide chains. (d) Proteins are composed of domains which are units in the protein that can evolve, 
function and exist independently of the rest of the protein chain. Shown in (d) is the EF-Hand domain which is found in Calmodulin and other 
calcium binding proteins such as LCP1. Proteins that contain the same domain are said to belong to the same family. (e) Structural motifs are 
structurally similar constructs that can occur in different proteins. Unlike domains, structural motifs cannot exist independently. Shown in (e) is 
the EF-Hand calcium (shown in cyan) binding motif. Calmodulin contains four of these motifs and as a consequence can bind up to four calcium 
ions.  It should be noted that structural motifs are different from sequence motifs which are biologically significant amino acid (for proteins) or 
nucleotide (for DNA and RNA) sequences patterns. For example, the consensus sequence of the EF-hand calcium binding structural motif shown 
in (e) is ExxxxxxxxDx[DN]x[SDN]Gx[LVI]x[ESD]xxE where 'x' denotes a don't-care position and residues in square brackets can substitute one 
another at the same location. Such consensus sequences or sequence logos are used to represent sequence motifs (see Figure 7). For more 
information on protein structure, the interested reader is referred to [3]. In this figure, a cartoon representation of proteins has been shown. 
An alternate visualization scheme is the space filling view of Figure 2. 



4 
 

As stated earlier, most of the molecular functions of proteins are made possible only through their 

interactions with other molecules and ions. In order to fully appreciate the importance of identifying the 

sites of these interactions on proteins, complications involved in their computational prediction and the 

role that computational methods can play in this area, a thorough description of molecular recognition 

or binding in proteins is warranted.  

In order to explain the basis of molecular recognition in proteins with respect to their structural and 

physiochemical properties, a number of models have been proposed. One of the first such models is the 

"lock-and-key" model [5] which dictates that structural shape complementarity between the protein and 

the binding substance is essential for binding to occur. However, this model is too restrictive as shape 

complementarity, although playing an important role, is not the sole cause of binding [6].  

A more realistic view is provided by the "induced-fit" model which states that shape complementarity 

plays an important role in binding but the binding process is also driven by usually non-covalent 

intermolecular forces (such as van der Waals interactions, hydrophobic effects, Hydrogen bonding etc.) 

resulting from the interaction between the protein and the binder. It also states that the binding  

process can cause conformational changes in the protein leading to an induced fit of the binder in the 

protein [7]. Thus, along with shape complementarity, complementarity in the physiochemical properties 

of a binder and its target protein determines binding.  For example, hydrogen bond donors in a protein 

occur opposite to hydrogen bond acceptors in the binder, non-polar groups occur opposite to other 

non-polar groups and positive charges occur opposite to negative charges and so on. The induced fit 

model also explains the fact that not all intermolecular interactions occur between pre-existing 

complementary surfaces. One or both of the molecules involved in the interaction can undergo 

structural conformational changes to make binding possible. Thus, the task of predicting binding sites in 

proteins translates to identifying areas in a protein where such complementarities between the protein 

and its binder either pre-exist or can result from a binding-triggered conformational change. A more 

detailed model for binding is the conformational selection model discussed in [8]. 

Figure 2 renders an example of molecular recognition in proteins. Here, the protein Calmodulin is shown 

to bind to a protein (Edema Factor) from the Anthrax bacteria [9]. This binding is possible because of a 

conformational change in both proteins that causes their hydrophobic residues to bind. Calmodulin is an 

important calcium signaling protein involved in a variety of functions in the human body ranging from 

neuronal spiking to muscular contractions and its binding to the Edema Factor disrupts its functionality. 

This interaction is one of the mechanisms through which Anthrax affects cells in the human body. 

Another similar example is the ultimate destruction of a human immune cell by the binding of its CD4 

protein with the Human Immunodeficiency Virus's (HIV) gp120 protein [10]. Characterization of the 

interface between these proteins can help in developing treatment drugs such as inhibitors and 

antagonists or to introduce targeted mutations aimed at making this binding infeasible. These examples 

not only illustrate the importance of studying protein binding but they also underline how the 

identification of binding sites on proteins is critical to understanding biological processes.  
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(d) (e) (c) 
Figure 2 Binding of Calmodulin to the Edema Factor protein from Anthrax bacteria. (a) Unbound 'S' like structure of Calmodulin shown with its 
hydrophobic residues in red (PDB Entry 1CLL). These hydrophobic surfaces do not like to stay in contact with water. (b) The unbound structure 
of Edema Factor from Anthrax bacteria with its hydrophobic residues shown in yellow (PDB entry 1K8T). (c) The complex (bound) structure of 
Calmodulin (in green) with the Edema Factor (yellow and blue) (PDB entry 1K93) (d) The bound structure of Calmodulin from (c) with the Edema 
Factor removed from view. (e) The bound structure of the Edema Factor from (c) with Calmodulin removed from view. Notice the difference in 
conformation between (b) and (e). Also notice (from (c) and (e)) that the hydrophobic residues of Calmodulin bind to the hydrophobic residues 
of the Edema Factor. These figures were created using Jmol [11].  

2.1 Finding binding sites 
A number of experimental approaches can be used to find binding interfaces on proteins. If the three 

dimensional structure of a complex is known (for instance, through crystallography and Nuclear 

Magnetic Resonance studies), then binding interfaces can be found using distance thresholds and 

changes in Accessible Surface Area (ASA) as explained below. 

ASA is the area of the protein that is accessible to a solvent [12]. The residues whose ASA decreases 

upon binding can be considered to be part of the protein interface [13]. For example, interacting 

residues in the protein-protein interaction database InterPare [14] are defined to be the ones whose 

ASA changes by more than 1 Å2. However, this definition ignores the fact that during the process of 

binding, different conformational changes can lead to changes in ASA of residues which are not a part of 

the physical binding site.  Another consequence of such conformational changes is that some buried 

residues (with small ASA) will move to the interface and, in effect, increase their ASA.  

Another definition of binding interfaces derived from the 3D structure of a complex is based upon the 

distance between interacting components (residues, atoms or nucleotides). Amino acids on a protein (or 
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nucleotides on a nucleic acid) that are within 4-6 Å of the interacting substance are defined to be part of 

the binding interface as a bond is assumed to exist between them. This definition allows for different 

types of interactions [13] that operate over different distances (covalent bonds, disulfide bonds, salt 

bridges, hydrogen bonds, Vander-Waals forces) between the interacting molecules [3] and also for the 

variability in sizes of the protein residues themselves [15].  

Different methods in the literature use different techniques to define what qualifies as a binding site. 

Most methods use a simple distance based threshold. Other approaches for determining binding sites 

include Voronoi Tesselations [14], setting different distance cut-offs for different amino acids etc. 

However, the differences between interaction sites defined by all these methods is fairly small [14]. One 

the other hand, the thresholds used in a method can potentially play a significant role. Gromiha et al. 

[16] have used inter-residue interaction energy to define binding interfaces. They have found that, for 

their data set of 306 proteins, only 28% of residues were common between the sets of interacting 

residues defined using interaction energy and those found through a distance criteria. They have 

pointed out that using the distance based definition of interacting residues, 5.7% of residues have strong 

repulsive energies and may not be truly interacting.  

Different types of biological assays are employed in the experimental determination of protein binding 

and identification of binding sites. Since these assays are not the focus of this research exam, therefore 

relevant biological techniques are only referenced here without a detailed description. For protein-

protein interactions, methods such as Yeast Two-Hybrid (Y2H) [17], Affinity Purification/Mass 

Spectrometry (APMS) [18], Protein micro-arrays [19] etc. are employed.  The binding site of a Protein-

RNA interaction on the RNA can be detected using Crosslinking and Immunoprecipitation (CLIP) [20] and 

its derivatives [21], [22], etc. Assays for identification of Protein-DNA interactions include Chromatin 

Immunoprecipitation (ChIp) and its derivatives [23]. The locations of the binding sites for ligands can be 

determined using crystallographic data, nuclear magnetic resonance or from mutagenesis experiments 

[24]. 

Most of these biological assays are time consuming and expensive to perform. Computational 

approaches present a fast and inexpensive tool for the prediction of putative binding sites. Such 

computational approaches can also help in performing these biological experiments by narrowing down 

possible binding sites. 

2.2 Characteristics of binding interfaces 
Some of the general features that distinguish binding sites from non-binding sites in proteins (for all 

types of interactions) include structure, physiochemical properties, evolutionary conservation etc. In this 

section, similarities and differences between the characteristics of binding vs. non-binding regions 

among different categories of protein interactions are discussed. Information contained in this section is 

expected to help explain the choice of features made in different computational binding interface 

prediction methods presented in the rest of the research exam. However, it should also be noted that 

different proteins can have very different binding interface characteristics.  
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2.2.1 Structural properties 

Interfaces between proteins and smaller substrates (ligands) are typically cavities and concave clefts. 

The surface area of proteins buried in these types of interactions is usually smaller (up to a few hundred 

Å2) in comparison to the flatter, much larger (1200-2000 Å2) and more structurally intricate surfaces 

involved in protein-protein interactions [25]. It should be noted that residues forming a binding site in a 

protein may not be contiguous in sequence. This holds for most types of protein interactions [3], [26].  

In terms of secondary structure, binding areas on proteins tend to favor  -sheets in comparison to α-

helices. Moreover, loops in interfaces tend to be longer [27]. The sterically unfavorable right handed  -

helix occurs in protein binding interfaces with high-specificity .  

Most of the time, the residues involved in forming an interaction lie on the surface of a protein which 

permits the use of structural properties (from the unbound state of the protein) such as solvent 

accessible surface area (ASA) [28][29], Protrusion Index [30], Depth Index [30] to be employed for 

prediction of binding sites. However, at times, the binding process itself can result in a conformational 

change in the protein leading to changes in the degree of exposure of different residues in the protein to 

the surface [15]. Features based on these conformational changes have been utilized in [30] for the 

prediction of hotspot residues (see section 2.2.3).  

Post Translational Modifications1 (PTMs) can affect the structure and binding characteristics [32],[33] of 

a protein. For example, phosphorylation of a target residue in or near a Calmodulin (CaM) binding 

domain in a protein can change the affinity of the protein to bind CaM [31]. However, most of the 

existing methods for binding site prediction do not consider the role PTMs play.  

Structure can be employed as a good predictor of protein binding sites but there is an exponentially 

growing gap between the number of known structures [34] (which is much smaller) and the number of 

proteins with known sequence data. Therefore, using structure limits the applicability of a protein 

binding site prediction approach. Some of the structural descriptors used in computational methods for 

binding site prediction are [15]: neighbor list (residues that lie in spatial vicinity to the residue in 

question), ASA (can be calculated from protein structure using programs like DSSP [35]), relative ASA 

(ASA expressed as a fraction of the overall surface of the residues that is exposed to the solvent), 

residue interface propensity [36] B-factor (approximates the flexibility of a residue), secondary structure 

(what kind of secondary structure does a residue occur in), sequence distance (in number of residues) 

between residues that are structurally contiguous etc. These descriptors can either be calculated from 

the known unbound structures of a protein or be estimated from its predicted or approximated 

structure using methods that predict structure from sequence such as [37]. A theoretical problem with 

using unbound structures for training a binding predictor is that proteins can undergo significant 

structural changes upon binding. Thus, structure based methods trained on known complexes can fail to 

identify the binding sites in many unbound structures and this particular true if the size of training data 

                                                           
1 PTMs [31] are chemical modifications of a protein after its creation through the process of translation within the cell. PTMs extend the range 
of possible functions that a protein can perform or change its behavior by attaching other biochemical functional groups to it such as acetates 
and phosphates.  
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is small. Prediction of protein tertiary structure may not always be feasible (e.g., if the protein does not 

have related proteins (homologs) with known structure). 

2.2.2 Sequence properties 

The composition and propensity of different residues has been observed to be different in binding areas 

in comparison to non-binding areas. Such differences were employed as features in [38] for protein-

protein interaction site prediction. For example, the propensity of Tryptophan (W) to occur in protein-

protein interfaces was found to be higher than that of Alanine (A).  Protein-DNA binding sites tend to be 

highly enriched in positively charged Arginine (R) and Lysine (K) and lack negatively charged Aspartic acid 

(D) and Glutamic acid (G) [39].  The characterization of these differences using a variety of feature 

representations allows for sequence based prediction of protein interfaces.  

2.2.3 Hotspots 

All residues in a binding interface do not contribute equally to the binding energy [40]. For example, in a 

typical 1200-2000 Å2 less than 5% of interface residues contribute more than 2kcal/mol to binding. In 

small interfaces, this can be related to a single residue. These residues form what are called hotspots in 

protein interfaces and they can be of great importance in understanding protein interactions.  They can 

also be desired drug targets [41]. However, only a few existing approaches target the interface 

identification problem at the hot-spot level [10],[42],[43]. Hotspots can be identified by measuring the 

decrease in binding affinity between a protein and its binder upon mutating residues within the known 

binding site [44]. Typically, the residues are mutated to Alanine and the process is called Alanine 

scanning mutagenesis [45]. In the presence of well resolved three dimensional structure of a protein, in-

silico Alanine scanning can be used. If the mutation of a residue to Alanine changes the binding energy 

of the protein to its partner substantially (typically G > 2.5 kcal/mol), then this residue is considered a 

hotspot residue. Reliable methods for identifying hotspot residues can be used to design small drug like 

molecules which can bind to the hotspots on proteins and prevent complex formation. This can be a 

significant step forward in rational drug design. 

2.2.4 Physiochemical properties 

In terms of their physiochemical properties, both protein-protein interaction sites and high affinity 

binding cavities for other ligands are often less polar or more hydrophobic in comparison to the rest of 

the protein [46]. Other physiochemical properties that have been employed in binding site prediction 

include residue side chain polarity and charge, amphiphilicity index etc. 

2.2.5 Evolutionary conservation 

Evolutionary conservation of an amino acid in a family of proteins has been used as an indicator of 

functionally important sites within a protein. Interface residues tend to be slightly more conserved than 

other surface residues in proteins. However, the degree of conservation needs to be very high (more 

than 90% for protein-protein interactions [47]) to infer that the two proteins would bind to similar 

targets. The degree of conservation between interface residues and those in the interior of the protein 

is not significantly different [48], [49]. This is true because many conserved residues are buried in the 

interior of the protein and contribute to protein folding and stability.  
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Evolutionary features used in the binding site prediction methods include sequence profiles, Position 

Specific Scoring Matrices (PSSMs), residue conservation scores, conservation of physiochemical 

properties etc. A good review of different methods to score residue conservation is given in [50].  

Homology or sequence conservation information can be used to predict the structure of a protein based 

upon the structure of related proteins (using approaches such as SWISS-MODEL [51], ESyPred3D [52] 

and others) and the resulting predicted structure can then be used for predicting protein interfaces. The 

Structural similarity between two proteins is, in general, a good indicator of existence of similar binding 

interfaces.  

Other sources of information used in binding site prediction include cellular localization, protein-protein 

interaction profiles and functional annotations.  

3 Predicting binding sites 
As discussed earlier, computational approaches for the prediction of binding interfaces in proteins are of 

particular interest to bioinformaticians and biologists as they present an inexpensive and fast alternative 

to experimental techniques. Due to this interest, a large number of computational approaches exist in 

the literature for predicting different types of protein binding sites. In this research exam, an analysis of 

the overall status of the field is presented. Some interesting methods are discussed in detail. An attempt 

is made to identify the general challenges, difficulties and opportunities in this research area. 

In order to aid the discussion of different approaches for binding site prediction, a simple and generic 

mathematical formulation of the problem is described henceforth. Given a protein   and its binding 

partner   (another protein, a ligand, a metal ion or a nucleic acid molecule), the objective of binding site 

prediction is to find a scoring function        which will score the binding propensity of different 

components   (residues, motifs or domains) on the protein   to those on its binding partner  . 

Mathematically, 

                           (1) 

Here,   is the prediction function with parameters   and   denotes the feature descriptors used as 

input. Some instances of the above general problem formulation require that the binding components 

on both the protein and its binding partner be localized. Scoring functions of such problem instances can 

be expressed as                                   , where   is a component on the binding 

partner   and       indicates that the specific occurrence of   on   is being considered while 

generating the prediction. This is particularly desirable for protein-protein and protein-nucleic acid 

binding site predictors. However, as discussed in the next sections, not all protein-protein or protein-

nucleic acid binding site predictors do this. Other formulations may just predict the binding propensity 

of      with its partner   regardless of the binding component   on  . Such methods thus calculate 

                          . Yet other types of binding site predictors may choose not to 

consider the specific binding partner   at all and the scoring functions of such methods can be 

expressed as                       . Methods for predicting generic functional sites on a 
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protein fall into this category. Still other methods can simply calculate                 , i.e., 

without any regard to the protein on which   lies. Domain-Domain interaction prediction methods are 

examples of this specific formulation. Depending upon what the objective of scoring is, what kinds of 

data is used and what the exact formulation of the predictor   is, the input descriptor representation   

can be modified accordingly. For example, kernel based methods may not even require an explicit 

feature representation. The parameters   can be chosen empirically or estimated using training data 

through machine learning techniques. The output of the scoring function   can be class labels 

(interacting or not), numerical scores indicating the binding propensity or probabilistic values. 

Henceforth, we discuss computational methods for prediction of protein binding interfaces in 

interactions of proteins with different types of interaction partners.  

3.1 Protein-Protein Binding Interfaces 
Protein-Protein interactions are absolutely critical to a huge number of biologically important processes 

and the identification of  the protein binding sites involved in these predictions can help provide insights 

into the mechanisms by which different proteins fulfill their roles. A large number of computational 

approaches exist for predicting the binding sites involved in protein-protein interactions (see reviews 

[39], [53–57]). For protein-protein binding interfaces, the binding partner   in equation (1) is another 

protein.  

3.1.1 Classification of existing approaches 

A classification of different approaches for protein-protein binding site prediction is given in Table 1. The 

table classifies a selection of existing methods on the basis of the following criterion: 

a. Use of information about binding proteins 

Some protein-protein binding site prediction methods [58][59][60], simply predict binding 

affinities between pairs of motifs or domains independent of the proteins on which these motifs 

or domains lie. In terms of equation (1), these scoring functions of these approaches can be 

written as       . These methods typically try to explain a protein-protein interaction network 

through bindings between domains or motifs. For example, [58] tries to find the minimum 

number of domain-domain interactions using linear programming such that interaction 

constraints in a known protein-protein interaction network are satisfied. The underlying 

assumption of these methods is that the binding affinity between motifs is solely dependent 

upon the motifs themselves irrespective of the proteins on which they lie. However, the nature 

of binding sites is actually dependent upon the overall structural and chemical composition of 

the proteins involved in the binding [61]. Other methods predict the putative binding sites on 

any given protein irrespective of its specific binding partners, i.e., they identify structural or 

sequence constructs where a protein can bind any other protein. Such methods are called 

partner independent predictors. With equation (1) in mind, their scoring functions can be 

represented as                       . A good review of such approaches is given in 

[56]. These methods ignore the fact that the binding propensity of a residue (or any other 

construct such as a motif or domain) is also dependent upon the nature of residues on its target 

protein. Moreover, partner-specific binding site predictions allow a more detailed and precise 
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understanding of the nature of protein-protein binding. In terms of equation (1), the scores 

generated by such methods can be expressed as                                   . 

However, only a few existing methods generate partner specific predictions.  

b. Descriptors used 

Binding site prediction methods can be classified on the basis of the type of information that 

they use to make the predictions, i.e., on the basis of what makes up   in equation (1). Most of 

the methods rely on structural features of proteins. Some methods also use homology or 

conservation information. However, there do exist some approaches that use sequence 

information alone. 

c. Interface level 

Protein interactions can be seen to occur at three different levels of a concept hierarchy: whole-

proteins, domains/motifs or residues. Binding site prediction approaches can operate at either 

the domain/motif level or at the residue level, i.e., depending upon how the components of a 

protein       are defined in equation (1). An example prediction from a method that operates 

at the motif level might look like "Motif M on protein A interacts with protein B". On the other 

hand, binding site prediction approaches working at the residue level attempt to identify 

individual residues that are a part of the binding interface on a protein. Some of the early 

methods for binding site prediction represent binding sites as surface patches on proteins where 

a patch is defined to be a group of neighboring residues in the three dimensional structure of a 

protein.  

d. Prediction of hotspots 

Ofran and Rost [10] indicate that generic approaches (like ISIS [62] or ProMate [27]) for the 

prediction of binding interfaces between proteins actually identify specific residues that are 

crucial for stabilizing the interactions, i.e. hotspots. Recently, some methods that explicitly 

predict whether an interface residue is a hotspot residue or not have emerged.  

e. Types of interactions 

The nature of interaction sites and the level of difficulty involved in predicting them vary 

depending upon the types of protein-protein interactions being considered [63]. This relates to 

the grouping of proteins   and   in equation (1). For example, interfaces in antigen-antibody 

interactions are structurally very different from other types of interactions [64]. Detection of 

binding sites on antibodies is considerably easier in comparison to antigenic proteins [15]. A 

similar difference exists in the prediction of homo- versus hetero- oligomeric interaction sites 

with the former being much easier than the latter. Majority of the existing methods do not 

consider these variations during training and prediction. Although this ensures larger 

applicability of the resulting algorithm but it comes at the cost of loss in accuracy. Some of the 

existing methods that focus on peculiar types of interactions have shown that considering the 

interaction type can improve accuracy. However, for many types of interactions there are not 

enough training examples available and this hinders interaction-type-specific training. 

f. Prediction scheme 

Protein-Protein binding site prediction techniques can be classified on the type of the function   

used in equation (1) for producing the scores. Almost all prediction schemes use parametric 
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functions. Some methods use empirical scoring functions with weighted terms for contribution 

from different input data and the parameters   are chosen manually. However, the design of 

such functions requires significant physical insight. Methods that perform automated selection 

of the parameters and the choice of the functional form are more desirable. These methods fall 

under the realm of machine learning. Researchers have applied both supervised (e.g., linear 

regression [65], neural networks [66], support vector machines [67], conditional random fields 

[68], random forests [69])  and unsupervised schemes (e.g., Bayesian probabilistic models for 

modeling protein-protein interaction networks to predict protein specific domain-domain 

interactions as in InSite [61]). The choice of a particular machine learning method is dependent 

upon the type of data being used and the specific output requirements of the approach.  

3.1.2 Qualitative analysis of existing methods 

As is evident from Table 1, most of the methods require structural information to make predictions. 

However, as described earlier, the use of structure information can limit the applicability of a method as 

the number of proteins with known structure is small.  In this research exam, we focus on techniques 

that use sequence or sequence-derived information only. Another general observation from Table 1 is that 

most of the existing approaches perform partner-independent prediction of binding sites. In this 

research exam, we focus on existing approaches that perform partner-aware predictions. A naive 

approach to generate binding propensities between pairs of constructs (amino acids, domains or motifs) 

on two proteins using a partner-independent predictor is to simply add the prediction scores assigned to 

each construct by the predictor, i.e., in terms of equation (1),                         

        . However, methods that consider pair-wise interactions between proteins during training 

perform significantly better [70].   

One of the first approaches to perform partner-specific binding site predictions is InSite [61]. InSite does 

not require binding site information during training and uses non-structural information about a protein 

to make its predictions. InSite learns possible binding pairs at the motif level given a protein-protein 

interaction network using a probabilistic model. InSite is able to integrate a wide variety of data sources 

such as protein-protein interaction information from a number of different biological assays along with 

any indirect evidence of protein-protein or domain-domain interaction like expression correlation, Gene 

Ontology (GO) annotations [71] and domain fusion. InSite uses a library of conserved sequence motifs 

(such as ProSite [72] or Pfam [73]) and generates a probabilistic score as the binding propensity 

between two motifs. However, two motifs can obtain different scores depending upon the proteins they 

are occur on. InSite has been used to understand the mechanics of different diseases in light of its 

predicted sites of interactions between proteins. However, InSite can only predict those motifs that are 

part of the input motif library, i.e., it cannot find sequence motifs automatically. Additionally, It is more 

interesting to obtain binding site information between two interacting proteins at the residue level as it 

allows for a more detailed understanding of the interaction.  

A non-parametric approach for identifying binding site residues in protein sequences using sequence 

information alone, called PIPE-Sites, is given by Amos-Binks et al. [74]. This method is based on the 

Protein-Protein Interaction Prediction Engine (PIPE) [75] and is able to perform partner-aware 

predictions. According to an independent assessment by Park et al.  [76], PIPE compares well with the 
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best existing binding predictors. For any two proteins A and B and a given data set of known protein-

protein interactions (called interaction list), PIPE selects a 20 residue long sliding window wa from 

protein A. It then creates a set R of the interaction partners of all proteins in the interaction list that 

contain a window matching wa (within a pre-specified similarity threshold). PIPE then finds all the 

proteins from R that match a sliding window wb from protein B. The number of proteins in R that contain 

wb is defined as the score S(wa,wb). This score is computed for all possible windows in the two proteins 

and yields a 3D surface called PIPE landscape. Peaks in this landscape are potential binding sites 

between the two proteins. PIPE-Site uses a heuristic approach to find peaks in the landscape generated 

by PIPE. It is important to note that PIPE-Site does not use information about known binding sites during 

its operation. Amos-Binks et al. have shown that this simple approach is able generate accurate results 

when tested over human and yeast proteomes. Although an independent validation of this approach 

using a non-redundant protein interaction list needs to be performed, the PIPE landscape can prove to 

be a helpful feature for binding site prediction in conjunction with other features and a more 

sophisticated classifier. PIPE-Sites can perform poorly in cases where the specificity of binding interfaces 

of a protein is low, e.g., Calmodulin binding proteins. 

 

Figure 3 Binding propensity of different amino acid pairs plotted from the data in supplementary table-1 of [70]. A single residue shows 
different binding propensities with different resdiues. For example, the pairing of Proline (P) with Tryptophan (W) is highly preferred in 
comparison to its pairing with  Alanine (A) in protein-protein interfaces. Only some of the amino acids, such as Tyrosine (Y), Valine (V) and 
Alanine (A), have relatively uniform binding propensities for different amino acids. They have also discussed the physiochemical basis of the 
observed differences in propensities. 

Ahmad and Mizuguchi [70] discuss the effects of performing partner-aware versus partner-independent 

binding site prediction. Their analysis of the binding propensities of residue pairs in protein-protein 

interfaces clearly shows that the binding propensity of a residue is strongly dependent upon its partner 

in other proteins (see Figure 3). On the basis of these differences in propensities, they hypothesized that 

considering residue pairs on interacting proteins in binding site prediction can improve performance and 

found out that this is in fact the case. Their proposed approach uses features based on residue pairs in 

proteins. First, for any given protein P, its position specific scoring matrix (PSSM) [77] and position 

dependent 1-spectrum feature representations are obtained.  The PSSM of protein   with length    is 

given by the       matrix                                 in which each element        

is the (relative) frequency of occurrence of amino acid   at location   in a multiple sequence alignment 
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with protein  . Thus, PSSM quantifies the degree of evolutionary conservation of different residues at 

different locations in the protein. The position specific 1-spectrum representation of protein   is 

another       matrix given by            
            

          
               . Figure 4 details the 

construction of residue pair features using       and    . It also explains the training and evaluation 

processes used in the method. It is important to note that the feature representations used in this 

approach are position dependent. Such feature representations offer better sensitivity in prediction as 

they allow for the learning of position specific differences in interface and non-interface residues [78]. 

The findings from their performance evaluation can be summarized as follows: 

a. Predictors trained on residue pairs outperform partner-independent predictors  

b. Combination of multiple window sizes for different feature types and the averaging of outputs 

from neural networks improves performance 

c. Complexes with large conformational changes are difficult to predict 

 

Figure 4 Feature extraction, training and evaluation in [70]. The feature representation of single residue   in a    residue long protein   is 
constructed by considering   and   columns from         and        centered at  . The PSSM feature vector representation of the residue 
using a length   window is a        dimensional column vector obtained by the concatenation of   columns of         centered at 

position   and is denoted by   
          . Similarly, the        dimensional column vector   

          denotes its PD-1 representation with 
window length  . The complete feature representation for residue   in protein   is given by     

    . Valid indices for   are           

              where                             . Next, residue-pair features     
         are extracted. In particular, for a 

residue   in protein   and a residue   in protein  ,     
         is constructed by concatenating the individual feature representations of the two 

residues. A neural network denoted by       is then trained over these residue pairs using their corresponding labels (interacting or not-

interacting). Since     
         and     

         represent the same physical interaction pair, therefore both of these instances are used to train 

the neural network with the same label. A total number of 5 window sizes (               ) for each type of feature representation are 
employed. This leads to 24 possible feature representations since       is an empty representation. A total of 24 different neural 
networks (each operating at different window sizes) are trained and, during evaluation, their outputs are summed to produce the final score for 

every pair of residues, i.e., in terms of equation (1),                             
                    

             .  

Ahmad and Mizuguchi [70] use an ensemble of neural networks to produce the predictions.  Use of large 

margin kernel methods such as the one proposed in [78] and incorporating predicted ASA, predicted 

secondary structure and PIPE landscapes has the potential of improving performance even further. The 

use of kernel methods would make the extraction of residue-pair features much easier, e.g., tensor 

product kernels. For a detailed description of tensor product kernels and their applicability to a very 

similar problem, the interested reader is referred to [80]. 
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Most of the existing methods use a classifier (such as a neural network or SVM) that assigns labels 

(interacting or non-interacting) to either residues or residue pairs. As a consequence, these approaches 

do not take into account the inter-relations between neighboring residues when generating predictions, 

i.e., each residue is treated independent of any other. The only inter-relations that can exist between 

neighboring residues in such approaches arise from overlap between adjacent spatial patches or 

sequence windows. Liu et al. [81] have pointed out that considering inter-relations between spatially 

neighboring residues by using a Hidden Markov (HM) SVM [82] can improve prediction performance. 

HM-SVMs generate sequence labels for the whole protein sequence instead of producing independent 

predictions for each residue. In doing so, they are able to consider long distance inter-relations between 

labels. Other approaches that use similar ideas include: Bayesian networks [83], Conditional random 

fields [84] and Hidden Markov Models [85]. However, the effectiveness of using this property in 

sequence-only and partner aware predictions still needs to be investigated. 

In terms of machine learning concepts, an interesting approach is given by Qi et al. [86]. It presents the 

prediction of multiple local properties (such as solvent accessibility, secondary structure etc.) and the 

identification of protein or DNA binding residues in a protein as a single multi-task learning problem. 

This allows the learning method to leverage the commonalities and inter-relations in all these tasks to 

produce better predictions than learning to solve each problem separately. This improvement is 

particularly noticeable in tasks for which the amount of available training data is small. The multi-task 

learning problem is solved using a deep neural network architecture. However, their approach does not 

perform partner-specific prediction of DNA or protein binding residues and can benefit from it. Based on 

this idea, It would be interesting to implement and study a partner-aware protein binding site predictor 

that uses its own predictions of quantities that are relevant to binding site prediction (such as ASA, 

secondary structure, conformational change upon complex formation, PTM sites, DNA, ligand and metal 

ion binding sites, etc.).  

In terms of interface level of prediction, the authors of [87] have found out that simultaneous prediction 

of protein, domain and residue level interactions with information flows between the predictors at 

different levels can improve the prediction performance at all levels.  

As is evident from Table 1, most of the methods for predicting hot-spots in protein interactions perform 

a two class classification to discriminate between hot-spot and non-hot-spot residues in protein 

interfaces for which the complex structure is known. However, it will be more useful to do so directly 

from the sequence. Nguyen et al. [88] have shown that sequence based predictors of hotspots can offer 

comparable performance to state of the art methods that use bound structure. However, their approach 

does not produce partner-specific predictions.    
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Table 1 Qualitative comparison of different protein-protein binding site prediction methods. 1 

Method Year 
Partner 
Specific 

Interface 
Level 

Hot  
spots 

Types of Interactions Descriptors Prediction Scheme 

Cons-PPISP [89] 2005 No Residue No General PSI-BLAST profile, Solvent accessibility Neural Networks 

Promate [27] 2004 No Patch No 
Heteromeric 
Transient 
(No antibodies) 

Conservation, Secondary structure 
Amino acid pairing 

Naive Bayesian 

PINUP [36] 2006 No Residue No 
Transient 
(No antibodies or antigens) 

ASA, Residue interface propensity, Side chain energy, PSI-
BLAST profile 

Empirical Scoring Function 

PPI-PRED [90] 2005 No Patch No 
Results reported separately for 
different types 

Surface shape, Electrostatic potential SVM 

SPPIDER [79] 2007 No Residue No Both hetero & homo complexes 
Sequence, Physiochemical properties, Evolutionary profiles 
Tertiary structure, Predicted relative ASA, Difference 
between predicted & observed relative ASA 

Neural Network 

Meta-PPISP [91] 2007 No Residue No Enzyme/Inhibitor proteins Uses raw scores from cons-PPISP, Promate and PINUP Linear regression 

Multilevel [87] 2009 No 
Protein, 
domain 
&residue 

No General 

Protein level: Phylogenetic profiles, localization, gene 
expression, Interaction. Domain level: Phylogenetic tree 
correlations of Pfam alignments, number of proteins in an 
organism from a particular domain. Residue Level: PSI-BLAST 
profiles, predicted secondary structure, predicted ASA 

A Support Vector Regression 
(SVR) based multi-level learning 
scheme that allows sharing of 
training data from multiple 
levels 

InSite [61]  2007 Yes Motif No General 
Conserved sequence motifs, Protein-Protein Interactions, 
Expression correlation, Gene Ontology annotations, Domain 
Fusion 

Unsupervised learning of 
binding sites from interaction 
data using a probabilistic model 

Ahmad et al. [70] 2011 Yes Residue No General 
PSSM encoded sequence windows and position dependent 1-
spectrum  

Neural network ensemble 

PIPE-Sites [74] 2011 Yes Residue No General 
Sequence windows and similarity of sequence windows in 
two proteins using PAM120 score 

A Heuristic method for 
identifying peaks in PIPE [75] 
landscape 
Uses protein-protein 
interactions to deduce binding 
sites 

Liu et al. [81] 2009 No Residue No 
Separate evaluations for Homo- 
& Hetero- complexes 

PSSM profiles and ASA of spatial neighbors in a window 
(obtained from the experimental structure of a protein) 

Hidden Markov SVM 

ISIS [62][10] 2007 No Residue Yes Transient heterooligomer 
Residue sequence windows, Evolutionary profile of all 
residues in window, Predicted secondary structure, Predicted 
ASA, Conservation score of residues 

Neural Networks 

KFC2 [92] 2011 Yes Residue Yes General 
Use complex (bound) structure information, Hydrophobicity 
and solvent accessibility , structural neighborhood features, 
biochemical contact features etc. 

SVM  

HSPred [93] 2011 Yes Residue Yes General 

Uses complex structure. 
Van der Waals, hydrogen bond and solvation side-chain 
inter-molecular energies; van der Waals, hydrogen bond and 
solvation environment inter-molecular energies; van der 
Waals side-chain intra-molecular energy. 

SVM 

APIS [30] 2010 Yes Residue Yes General Uses complex structure and sequence features. SVM 

Nguyen et al. [88] 2011 No Residue Yes General 
Frequency domain representation of amino acid sequences 
(Using 3D structure features improves accuracy) 

Random Forests 
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3.1.3 Performance Analysis 

A fair comparison between existing approaches is not easy. This is because different approaches use 

different datasets containing different types of interactions, different feature representations, different 

definitions of what qualifies as an interface residue, different performance metrics, different sequence 

similarity thresholds in the data and so on. In the knowledge of this author, the most extensive 

compilation of performance metrics of existing partner-independent approaches is given in [55]. 

However, it only lists the original results reported in various papers. Zhou and Qin [39] have compared a 

small number of partner-independent predictors over the same test data set and have found that the 

performance ranking of methods being considered is PPI-Pred < SPIDDER < cons-PPISP, Promate < PINUP 

< meta-PPISP. Some later methods such as [70] claim better results than some of these approaches. 

However, the differences are not huge and, in the knowledge of this author, no method for binding site 

prediction (partner-independent or partner-dependent) reports an area under the Receiver Operating 

Characteristics (ROC) curve (AUC) of more than 75%. This shows that significant room for improvement 

is present in this problem domain.  

Another point about the reporting of results by different methods is that most methods report AUC 

scores through a cross-validation procedure. However, in the opinion of this author, evaluating a single 

AUC score for the whole data set might not reveal the true performance characteristics of a method. An 

AUC score for each protein is more insightful, especially for methods that operate at the residue level. A 

single performance metric for a given method over a data set can then be calculated by determining the 

mean and dispersion of these protein-level AUC scores. These proposed performance metrics are in 

accordance with the nature of the problem and the way these prediction approaches are used in 

practice: Users are interested in identifying correct binding interfaces within a protein and If a residue in 

a protein receives a correct high score within that protein, it does not matter how its prediction score 

compares with other residues in other proteins.  

3.2 Protein-Nucleic Acid Binding Interfaces 
Proteins interact with DNA and RNA molecules to perform a large variety of functions of critical 

biological importance. A protein that binds DNA (or RNA) is called a DNA (or RNA)-binding protein (DBP 

or RBP). Interactions of a protein with DNA are crucial in processes such as transcription, transcriptional 

regulation, DNA replication, recombination and repair, viral infection etc. An important category of DBPs 

that activate or repress  gene expression by binding to DNA motifs and histones is called Transcription 

Factors (TFs). Most of the RBPs bind DNA on the major groove of the DNA which is wider. DBPs are 

composed of DNA-binding domains such as the zinc finger, helix-turn-helix, leucine zipper etc. RBPs are 

involved in translation of mRNA, post-transcriptional events such as RNA splicing and editing, RNA 

transport, regulation of RNA levels etc. [94]. The complexes resulting from the binding of RNAs to 

proteins are called ribonucleoprotein complexes (RNPs) and defects in these complexes or their 

formation can be a basis for a number of diseases [95]. RBPs contain RNA binding domains, e.g., RNA 

Recognition Motif, K-Homology, RGG box etc. Prediction of binding interfaces between protein and 

nucleic acid can be invaluable to the understanding of precise binding mechanisms, function of genomes 

and diseases. 
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In contrast to the regular double-helical structure of DNA, RNA molecules form complex secondary and 

tertiary structures and this makes the prediction of interactions and interaction sites for RNA more 

difficult than DNA. In comparison to protein-protein interactions, protein-nucleic acid interfaces are, in 

general, less diverse and, as a consequence, easier to predict. Figure 5 illustrates this point for a specific 

data set [96]. Gromiha  et al. [16] have found that protein-protein and protein-nucleic acid interactions 

differ significantly in their amino acid, dipeptide and tripeptide binding propensities. However, protein-

nucleic acid binding is mediated through the same interactions (electrostatic, van der Waals, hydrogen 

bonds, water-mediated bonds etc.) as protein-protein interactions. Rawat and Biswas [97] have found 

that the number of hydrogen bonds in protein-protein interactions is, on average, smaller than in 

protein-nucleic acid complexes. Like protein-protein interactions, protein-nucleic acid binding can also 

introduce conformational changes in both the binding protein and the DNA.  

 

Figure 5 Single amino acid level propensities for protein-protein, protein-DNA and protein-RNA interactions. The propensity data in this figure is 
taken from [96]. It shows that positively charged residues (Arginine, Histidine and Lysine) show stronger binding propensities for the negatively 
charged DNA molecules. The Gini coefficient [98] values for protein-protein, protein-RNA and protein-DNA interactions for this data are 0.1302, 
0.2856 and 0.2421, respectively. This shows that the diversity of the propensities of amino acids in protein-protein interactions is the smallest 
and this indicates that, in comparison to protein-nucleic acid interactions, a more intricate recognition mechanism is at work in protein-protein 
interactions. 

While looking at interactions between nucleic acids and proteins in terms of equation (1), the binding 

partner   of a protein   is a nucleic acid (DNA or RNA) molecule. It is important to note that there are 

two types of interfaces in a protein-nucleic acid interaction: one on the protein and the other on the 

nucleic acid. Identification of both of these interfaces is helpful as it can provide a fuller understanding 

of the binding mechanism and its biological function. In this research exam we focus on both the 

interfaces. However, interfaces on the DNA are discussed specifically in the context of transcription 

factor proteins. In the knowledge of this author, all existing computational methods predict either one 

of the two binding interfaces but not both. The similarity in the basic natures of protein-nucleic acid and 

protein-protein interface prediction problems allow for the use of a similar kind of feature 

representations, especially when considering binding interfaces on proteins. These features include both 

structural and sequence based representations [99]. Structure based methods (such as [100–102]) for 

identifying interaction sites on DBPs offer good performance. However, the unavailability of 

experimentally determined protein structure or unreliability of predicted structure (due to a lack of 

homologues) prevents wide-scale use of these methods. In this research exam, we focus on sequence 
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based prediction approaches.  Henceforth, we present an overview of existing computational methods 

for predicting each type of binding interface for both DNA- and RNA- protein interactions.  

3.2.1 Prediction of binding interfaces on DBPs 

With the increase in amount of available data for DBPs, it is now known that binding specificity or 

recognition for protein-DNA interactions is possible through a diverse set of mechanisms [103]. This has 

led to a number of sophisticated approaches for the computational prediction of DNA binding interfaces 

on DBPs. Early research on binding site identification in DBPs ([100], [104–106]) has demonstrated that 

some important features that are able to distinguish between DNA-binding and non-DNA-binding 

residues on a protein can be extracted from sequence information alone. In the knowledge of this 

author, the first method that used sequence or sequence-derived information alone was proposed by 

Ahmad et al. [105]. This method uses a feature representation consisting of PSSM and sequence identity 

features of residues within a sliding window. These features are then given as input to a neural network 

classifier to produce a prediction. Ahmad et al. [105] found that addition of PSSM information improves 

the prediction performance of the classifier in comparison to using sequence information alone. 

However, the accuracy of this approach was very low. Later approaches such as DISIS [107], NAPS [108], 

SVM-PSSM [109], BindN-rf [110], BindN+ [111] etc. offer significantly better performance with some 

approaches performing roughly as good as the best structure based methods. A very recent review [99] 

tabulates the performance of a number of these approaches. In this research exam, DISIS [62] and NAPS  

[108] are presented as representative examples in the area. 

DISIS [62] (DNA Interaction Sites Identified from Sequence) gets its name from a similar method for 

predicting protein-protein interfaces called ISIS proposed by the same group (see Table 1). Figure 6 shows 

the internal workings of DISIS. DISIS shows that using residue-level evolutionary profiles and 

conservation scores along with predicted secondary structure and ASA offer better discrimination.  

 

Figure 6 Internal structure of DISIS [62]: DISIS uses PSI-BLAST (3 iterations with a cut-off at 10-3) to find all proteins from a sequence database 
related to query sequence. Using the query protein as the template, a multiple sequence alignment of the homologous proteins is obtained 
through MaxHom [112]. MaxHom is based on the Smith-Waterman dynamic programming algorithm. The multiple sequence alignment is used 
by PROFphd [113], a neural network based predictor of secondary structure (SS) and ASA. The multiple sequence alignment is also used to 
calculate the profile and residue conservation scores for the query sequence. For a given residue in the query sequence, the following features 
are given to a SVM: evolutionary profile of the residue and its 4 neighbors on each side, level of conservation along with the predicted solvent 
accessibility of the residue and its neighbor on each side, predicted secondary structure of the residue.  

NAPS (Nucleic Acid Prediction Server) [108] is one of the most accurate sequence-based predictors 

currently available [99]. In comparison to DISIS, NAPS offers higher sensitivity. This is particularly true for 

high specificity values. For a given residue in a query protein, NAPS constructs a 301 dimensional feature 
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vector as follows: the amino acid for the residue is represented using a 20 dimensional binary vector (1 

entry for each amino acid), a single charge attribute for each residue, the PSSM representation of a 7 

element window centered at the residue of interest (140 PSSM features) and the 20 row elements from 

the columns of the BLOSUM62 matrix corresponding to each of the 7 residues in the window (140 

BLOSUM62 features in total). PSSMs and BLOSUM62 features capture position dependent and position 

independent conservation information for a residue, respectively. NAPS uses residue charge information 

as well by assigning charges of +1, +0.5 and 0 to Arginine and Lysine, Histidines and all other residues 

respectively. This can help because DNA molecules are negatively charged and positively charged basic 

amino acid residues on proteins exhibit relatively higher binding affinities than other amino acids (see 

Figure 5). NAPS uses C4.5 decision tree classifiers with bagging for classification. NAPS uses the same 

features for predicting interface residues on RBPs as well. The authors of NAPS have compared different 

classification approaches. However, in terms of sensitivity at high specificity values, SVM appears to 

perform marginally better than the C4.5 based classifiers recommended in their paper. Physiochemical 

properties of amino acids are also used in BindN-rf [111] along with PSSM and conservation scores. It 

should be noted that BindN-rf computes, for a given residue in a  protein, the average and standard 

deviation of the physiochemical properties  of amino acids from the PSSM to which the input residue 

aligns. NAPS compares well with structure based prediction approaches [99]. The recently proposed 

sequence based multi-task prediction method by Qi et al. [86] offers roughly the same performance as 

NAPS.  

Recently, a meta-classification approach called MetaDBSite [114] has been proposed. MetaDBSite 

combines the predictions of multiple existing predictors including DISIS and BindN-rf. In comparison to 

the individual methods used in MetaDBSite, the combination achieves marginally better average of 

sensitivity and specificity values. However, in the absence of a complete ROC curve, it is difficult to draw 

specific conclusions about the efficacy of this approach. 

3.2.2 Prediction of binding sites on DNA 

Identifying the locations on DNA where proteins bind can help understand the mechanisms of how DNA 

works. There are three major types of binding sites of proteins on DNA: 

 Regulatory sites are specific cis-acting locations on the DNA where trans-acting proteins bind to 

regulate the expression of genes. An important and well studied category of regulatory proteins 

is transcription factors (TFs). TFs are responsible for regulating the process of transcription. TFs 

function alone or with other proteins (forming a complex) to promote (as an activator) or block 

(as a repressor) the recruitment of RNA polymerase2 for specific genes. However, some TFs act 

both as activators and repressors for the same gene [115]. TFs are usually 4-30 base pairs long.  

 Restriction sites are binding sites for proteins called restriction enzymes. Restriction enzymes, 

found in bacteria and archaea, cut foreign DNA as they bind to that DNA molecule. This works as 

a defense mechanism against invading viruses. Host DNA is methylated to prevent damage from 

the enzyme's activity.  

                                                           
2 RNA polymerase is an enzyme that creates RNA from DNA. 
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 Recombination sites: Site specific recombination is an operation in which DNA-strand exchange 

takes place between segments possessing only a limited degree of sequence homology. Proteins 

involved in this process are called recombinases and the locations on the DNA where these 

recombinases bind the DNA are called recombination sites.   

The binding specificity of different types of binding sites is different [116]. For example restriction sites 

are generally identical short (4-8 base pairs) sequences and binding propensity greatly decreases for less 

similar sequences. For example, the common restriction enzyme EcoRI recognizes the palindromic 

sequence GAATTC and cuts between the G and A on both stands. Thus, these binding sites can be 

expressed as consensus sequences or a sequence that allows for some ambiguity (for example, GTYRAC 

for the enzyme HincII where locations with Y and R are pyrmidines (T and C) or purines (A and G) 

respectively). On the other hand, regulatory and recombination sites are usually different from one 

another (even for the same protein) and usually sequence logos or PSSMs (also called Position-specific 

Weighted Matrices (PWMs)) are employed to represent these binding sites. For example, the sequence 

logo representation of the transcription repressor lexA is shown in Figure 7. 

 

Figure 7 The sequence logo for the transcription factor lexA. The x-axis corresponds to the relative positions on the DNA whereas the height of 
a nucleotide is proportional to its prevalence at that location. The overall height at a location is proportional to overall conservation (across all 
binding targets) measured using information content at that location. Figure adapted from:  

(http://www.ch.embnet.org/CoursEMBnet/Exercises06/regulatory_motifs.html) 

In this research exam, approaches for finding TF binding sites (TFBS) on DNA are considered. Methods 

for finding these sites are considerably different from techniques for locating binding sites on proteins 

discussed earlier. This is due to two primary reasons: 

 Over and above the prediction of TFBS, biologists are also interested in finding the PSSMs or 

motifs of TFBS 

 The experimental techniques used in finding these binding sites are considerably different in 

their nature. 

Most of the existing methods for finding binding sites on proteins obtain their training data from 3D 

structures based on a distance criteria. Whereas, methods for locating binding sites on DNA mostly use 

data from techniques such as DNA expression microarrays, Chromatin Immunoprecipitation (ChIP) 

array/seq. Microarrays can measure the expression level of each gene in an organism under various 

conditions. Genes showing similar expression levels under various conditions may be co-regulated by 

the same TF or sets of TFs. TFBS on these co-regulated genes can be found by giving sequences of 

regions upstream from these genes as input to motif finding algorithms. Another way to find TFBS with 
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expression data is to use phylogenetic profiling. This approach works on the principle that TFBS across 

species are more conserved  than random background. Upstream regions from co-expressed genes from 

multiple species are given as input to a motif finder which produces the PSSMs or consensus sequences 

for putative TFBS. In recent years, TF binding assays such as ChIP followed by microarray (ChIP-array or 

ChIP-chip) or  high-throughput next generation sequencing (ChIP-seq) have become more common. 

ChIP-seq data offers significantly better resolution (25-200 base pairs) than array based technologies. 

ChIP based methods not only give high-throughput but also provide quantitative measures of binding 

activity (ChIP enrichment). Another emerging technology is protein binding microarrays (PBMs).  

In terms of prediction approaches, TFBS finding methods can be categorized as generative or predictive. 

Generative models of binding motifs like Gibbs motif sampler [117], MEME [118], Consensus [119] etc. 

generate PSSMs from a set of input sequences. PSSMs model the probability distribution of different 

nucleotides at a given location independent of its inter-relationships with other locations. However, 

methods (e.g., [120]) that consider such inter-relations have shown better performance. Some motif 

finders (such as SVMotif [121], DEME [122], DME [123] etc.)  work in a discriminatory fashion and, as a 

consequence, are able to use information from both positive and negative examples. Often, TFBS occur 

in clusters called cis-regulatory modules (CRMs) and there are interactions amongst different TFs. Some 

approaches try to infer the location of these CRMs (examples include [124], [125]). A recent review of 

these generative approaches is given in [126] .  

Predictive methods, on the other hand, treat gene expression or ChIP intensity values as output 

variables and usually employ regression-style discriminatory machine learning approaches for 

estimation of these values from DNA sequence features. In the context of discriminative approaches, 

PSSMs can be viewed as linear additive models. Predictive methods offer a more general and flexible 

framework for TFBS identification as they can easily incorporate information from both positive and 

negative examples. In this research exam we discuss some of these predictive approaches in detail. In 

terms of equation (1), these approaches can be expressed as                  , where   is a 

component of DNA sequence   and   are the parameters of the model. Different feature 

representations        used in the literature include [127]: matching strength of   with a certain motif, 

k-mer occurrences, histone modification data, conservation scores, GC content etc. Zhou and Liu have 

compared a number of different regression approaches such as Linear regression with feature selection, 

Neural networks with regularization, Support Vector Regression (SVR) with different kernels add 

additive models such as Bayesian Additive Regression Trees (BART) [128] using ChIP-chip data. They 

found that BART gave the best correlation between true and predicted values. However, the 

performance of SVMs was only marginally lower.  

Recently, methods for TFBS prediction have started to incorporate the roles of epigenetic features [126]. 

For example, Narlikar et al. [129] have found that using an informative prior over DNA sequence 

positions based on a discriminative view of nucleosome occupancy can improve the chances of find the 

correct TFBS motif significantly (by ~52%) in comparison to a uniform prior. Yuan et al. [130] have also 

proposed that incorporating nucleosome occupancy along with histone acetylation level can improve 

prediction performance. Similar observations have also been made by other recent approaches such as  

[131] and [132]. Information about other types of histone modifications such as phosphorylation, 

methylation etc. can also  impact prediction accuracy.  
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Most of the existing predictive approaches do not attempt to find TFBS for individual TFs. Rather, they 

try to locate genomic regions of regulatory elements. Recently, an approach called Chromia [133] has 

been proposed that predicts TFBS for individual TFs using hidden markov models. It has shown to 

significantly improve prediction performance. 

3.2.3 Prediction of binding interfaces on RBPs 

Methods for identifying binding sites on RBPs are, in character, very similar to those used for DBPs. Most 

of the existing sequence based methods (such as BindN+ [111], NAPS [108], PiRaNha [134], PPRInt, 

RNABindR, PRBR) for prediction of binding site residues on RBPs use features such as solvent 

accessibility, secondary structure, sequence conservation, hydrophobicity,  etc.  A number of structure 

based prediction approaches also exist [135]. Puton et al. [135] have recently published a comparison of 

ten prediction methods over a data set of 44 sequences from PDB. They have found that PiRaNha [134] 

outperforms all other approaches including the three structure based techniques considered in the 

comparison. They also present a novel meta-predictor by combining the predictions of three top scoring 

sequence based predictors (PiRaNha, BindN+ and PPRInt) from their comparison and found that their 

meta-predictor outperforms all existing methods (improvement of 0.013 in AUC score from PiRaNha). It 

is interesting to analyze the difference in prediction performance of the methods compared by Puton et 

al. in the light of the features used in them. Both BindN [136] and BindN+ [111] use SVMs and produce 

AUC scores of 0.733 and 0.821 respectively. BindN uses side chain disassociation coefficient values, 

hydrophobicity and residue molecular mass as features. BindN+ also incorporates evolutionary 

information (through PSSMs). This supports the general observation that evolutionary information can 

be very helpful in improving prediction accuracy. PiRaNha and NAPS (AUC: 0.679) also use PSSM 

information along with other features. It is interesting to notice the big difference in the performance of 

NAPS and BindN+ given that these two methods perform roughly the same on the task of identifying 

binding sites on DBPs (on the same data set) [99] and both use PSSMs. The exact reason for this 

difference is unknown. PiRaNha represents a residue using features such as PSSM scores, residue 

interface propensity (likelihood of a residue being found in an RNA-binding site taken from [137]), 

predicted solvent accessibility (from SABLE [138]) and hydrophobicity in a length 23 window centered at 

the residue of interest. Predictions are made using SVM. This shows that predicted structure features 

can improve classification performance.  

3.2.4 Prediction of binding interfaces on RNA 

In order to understand the mechanics of post-transcriptional regulation (PTR), the binding preferences 

of RBPs need to be characterized. Assays for identifying the binding sites of RBPs on RNA include Cross 

Linking and Immunoprecipitation (CLIP), CLIP-Array (CLIP followed by microarray analysis), CLIP-Seq 

(CLIP followed by high throughput sequencing), PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced 

CLIP), iCLIP (individual nucleotide-resolution ultraviolet CLIP) [21] etc. A number of computational 

approaches also exist in the literature for predicting putative RBP binding sites on RNA.  

In this research exam, we first consider the recently proposed approach called RNAcontext [139]. 

RNAcontext, for substrings of length K on the RNA,  learns a PSSM and a structural context vector that 

describes the relative preferences of different RNA structural constructs  in putative RBP binding sites. 

Despite its use of RNA secondary structural information, RNAcontext does not require that the structure 
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of the RNA be known in advance. Rather, RNAcontext uses SFOLD [140] to estimate marginal 

distributions at each nucleotide over different secondary structural constructs (such as hairpin loops, 

unstructured components, paired components and others). RNAcontext, given a RNA sequence, makes 

real valued predictions of its binding affinity using the PSSM and structural context learnt by the 

minimization of an regularized prediction error function using a training data set for a given protein. The 

PSSM and structural context produced from learning allow general conclusions to be drawn for the 

binding affinity of a protein, e.g., the RNA binding site for protein Vts1p is twice as likely to contain a 

hairpin structure comparison to the binding sites of HuR. RNAcontext offers excellent performance in 

comparison to other existing approaches such as MEMERIS [141] and MatrixREDUCE [142]. However, 

one short-coming of this approach is that, during training, the learning of parameters is done separately 

for each protein. It can potentially benefit from a multi-task style learner. Moreover, for certain proteins 

(such as YB1, FUSIP1 and U1A), the prediction performance is still very low.  

A more recent approach called PARalyzer uses binding evidence from PAR-CLIP data (log of the number 

of the number of T to C mutations in a region) and a motif finder called cERMIT to find putative binding 

sites using sequence information alone. PARalyzer finds a motif for the putative RNA binding site of a 

protein such that the average binding evidence value for sequence regions matching that motif is 

significantly higher than the average binding evidence. The optimization is done using a greedy search 

strategy that relies on local motif updates.   

Recently, some researchers have taken a feature space approach using SVM type classifiers to predict 

RNA binding sites in proteins. Livi et al. [143] have used features based on motif scores and k-spectrum3 

representations to predict regulatory binding sites of the protein CELF1 with an SVM classifier. However, 

using this approach, it is difficult to identify any PSSMs that would make the predictions more 

comprehensible to a biologist. A similar approach to binding using weighted degree kernels for 

identifying splice sites on the RNA is proposed by [145] and followed in [146]. Splice sites are regions on 

the pre-mRNA where certain small nucleic RNPs (snRNPs) bind and performing splicing to produce 

mRNA. Mersch et al. [147] have used a 1-norm SVM to identify the binding sites of SR proteins on the 

RNA. They employ locality improved and combined position dependent oligomer kernels and generate 

highly accurate predictions. One advantage of using oligomer kernels is that they allow for a better 

visualization of the nature of binding sites. Moreover, they are less stringent than the position 

dependent k-spectrum kernels discussed in [78] for protein-protein interactions. Locality improved 

kernels have also been used in [148] for the recognition of translation initiation sites.  

3.3 Binding of proteins to small drug-like ligands and metal ions 
Most of the existing methods for identifying ligand binding sites on proteins do not consider the nature 

of the ligand [149]. A large variety of methods uses 3D structure of the protein to find pockets or clefts 

on the surface of the proteins [150] where a ligand can bind. Some methods use machine learning 

approaches (such as SVM) with protein sequence characteristics and homology to find these binding 

sites [149].  

                                                           
3 The k-spectrum representation of a given sequence is a vector containing the frequencies of different k-mers (substrings of length k found in 
it) [144]. 
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In this research exam, we focus specifically on binding sites of metal ions on proteins. The binding of 

metal ions to proteins is of critical importance for protein function and structure. Finding binding sites of 

metal ions on proteins is a difficult problem as the number of possible residue choices for an ion to bind 

to is exponential in the length of the protein. A recent method by Passerini et al. [26] predicts the 

specific residues forming a binding site for different types of metal ions using a large margin structured 

output learning approach. The method, given some training data, uses a greedy approach to construct a 

function that scores correct linkages of protein residues to the metal ions they bind than incorrect 

linkages. This method offers a reasonable accuracy in terms of precision / recall curves. However, in the 

absence of AUC or similar scores, it is difficult to gauge the overall performance of the system. A 

generalization of this approach can be used for prediction of binding sites in proteins as well, especially 

when the binding residues are not contiguous.  

4 Issues and opportunities 
Looking back at methods for prediction of different types of interfaces for protein interactions, it 

becomes apparent that certain aspects of these interactions are not captured by existing methods. In 

this section, we summarize these issues.  

Partner aware predictions 

Research has shown that binding regions on a protein can change depending upon its partner. For 

protein-protein and protein-ligand interactions, recent research has led to realization of the importance 

of making partner aware predictions and a few methods do consider the interaction partners in making 

binding site predictions. Not only are such predictions more accurate, they are also more meaningful 

and informative in comparison to partner independent predictions. However, this area still requires 

more sophisticated machine learning methods (e.g. large-margin methods) and features (such as 

predicted structure, predicted ASA etc.) as there is significant room for improvement in accuracy. 

In the knowledge of this author, no methods for prediction of binding interfaces in protein-nucleic acid 

interactions explicitly utilize information from both the nucleic acid and protein sequence or make 

simultaneous predictions of binding interfaces on both the protein and the nucleic acid. One possible 

reason for this can be the lack of large data sets that allow for training a partner-aware predictor for 

protein-nucleic acid binding sites. Some protein-nucleic acid complex structures exist in PDB. These 

structures can be used to build a training data set in which we know the binding sites on both the 

protein and its binding nucleic acid partner. On the other hand, data from biological assays such as CLIP-

Seq or ChIP-Seq, however, gives only the binding site on the nucleic acid and not on the protein. Using 

such data would require more sophisticated machine learning techniques such as Multiple Instance 

Learning (MIL).  

Consideration to PTMs and epigenetic features 

PTMs regulate binding and the site of binding can change depending upon PTMs the protein has had. In 

the knowledge of this author, no methods for protein-protein interactions considers such information. 

Some methods for identifying binding sites on DNA have obtained better performance by using  
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epigenetic features (such as histone modifications by phosphorylation). Incorporating similar 

information in protein-protein interaction site prediction can also help improve performance. One way 

of doing this can be to use the scores obtained from a PTM site predictor (such as [151]) for a given 

region on the protein. 

Modeling dependencies across different types of interactions 

Similar to the notion of PTMs affecting binding, dependencies exist amongst different types of 

interactions that a protein is involved in. For example, some drug like ligands bind to a location on a 

protein that is involved in the interaction of that protein with another protein. Another example is the 

difference in protein-protein binding characteristics of Calmodulin in its Calcium-bound and Calcium-

free states. Modeling of such dependencies in the prediction process can potentially result in an 

improvement in performance. A related idea was used in [86] which employs multi-task learning to 

simultaneously predict binding sites in protein-protein and protein-DNA interactions along with other 

related characteristics (such as ASA and secondary structure).  

Prediction of hotspots 

Most of existing sequence based method do not explicitly model the fact that not all interacting 

components (residues or nucleotides) in an interaction contribute equally to binding stability can 

potentially produce more informative and accurate predictions. This is particularly true for methods 

dealing with protein-nucleic acid interactions as pointed out in [152] for protein-DNA interactions.  

Considering the nature of data in prediction 

It is important to consider the specific nature of data in making binding site predictions. For example, 

the binding sites obtained by mutagenesis experiments are, almost always, more accurate than the ones 

from Y2H techniques. A method that uses binding sites obtained from Y2H as training data should 

explicitly model this imprecision.  

Prediction of binding-related information 

Binding is not a binary (bound/unbound) phenomenon: it has a number of characteristics such as 

binding energy, conformational change etc associated with it. Despite the difficulty involved, it can be 

useful to predict these characteristics for residues in a binding interface along with the binding site. For 

instance, predicted binding energy for a residue can be used to identify whether a residue is a hotspot 

residue or not. Gromiha et al. [16] have calculated interaction energies and degrees of conformational 

change of all individual protein residues in different protein-protein interfaces from the 3D structure of 

a protein complex. However, in the knowledge of this author, no methods for predicting these binding 

characteristics from sequence information alone exists in the literature. 

Interpretability of results 

It is important that the binding predictions made by a method be interpretable. For example, it is 

interesting to see what specific motifs are involved in binding. Most feature based machine learning 
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approaches such as nonlinear SVMs or neural networks almost always work as black boxes. Some recent 

machine learning techniques such as Positional Oligomer Importance Matrices (POIMs) [153] and 

Feature Importance Ranking Measure (FIRM) [154] offer good interpretability and high accuracy for 

kernel based methods.  
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