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Executive Summary 

Cardiac disease is one of the leading causes of death all over the world. With the 

inception of fast signal processing and computing hardware, techniques for the 

automatic detection of cardiac disorders through ECG has stemmed up as one of the 

most promising methodologies in Clinical Decision Support Systems. Such a system 

can offer rapid, accurate and reliable diagnosis to a variety of cardiac diseases and can 

reduce the work load for cardiac experts along with providing a facility for the 

simultaneous monitoring of multiple patients. In this work we have developed 

techniques for the automatic processing and analysis of the ECG. The work is divided 

into three major parts: Part-I involving study and implementation of methods for 

removal of artifacts from the ECG. These include baseline and noise removal 

techniques. In this work we have compared different baseline removal techniques, 

such as use of digital FIR and IIR filters and 3 different polynomial fitting 

approaches, to find out that the use of a two stage first order polynomial fitting based 

method introduces least distortion in the ECG while effectively compensating the 

ECG baseline. For Noise removal, we compare and contrast three different 

techniques, i.e. Use of Digital filters, Independent Component Analysis (ICA) and 

Local Nonlinear Projective Filtering. We conclude that nonlinear projective filtering 

performs well in removing noise from the ECG, whereas the potential of ICA for this 

purpose has been explored.  

Part-II involves the segmentation of different ECG components, i.e. P, QRS and T-

waves using methods based on digital filters, Continuous Wavelet Transform (CWT) 

and the Discrete Wavelet Transform. A new method for QRS detection and 

delineation through CWT has been developed which compares well with existing 

research offering Sensitivity/Specificity of ~99.8% for detection of QRS with ~10ms 

error in determining its onset and offset. The accuracy of an existing DWT based 

method has been improved through the use of Genetic Algorithms (GA). We conclude 

that the use of DWT with parameter optimization through GA proves to be the most 

effective technique for ECG Segmentation giving equally good accuracy in terms of 

detection and delineation.  

Part-III is concerned with the classification of different types of heart rhythms 

(Normal, Atrial Premature Beats, Ventricular Premature Beats, Paced Rhythms, Left 



 xvii

and Right Bundle Branch Blocks) and the detection of ST Segment deviations 

connected to Ischemic Heart Disease. For the purpose of classification of different 

arrhythmias we have compared DWT based features with those obtained from the 

Discrete Fourier Transform (DFT) to conclude that DWT is more effective in the 

classification of different types of heart rhythms. We have achieved 99.1% accuracy 

through implementing a DWT based technique for feature extraction and using k-

Nearest Neighbor classifiers. These results have been compared with those obtained 

through the use of Probabilistic Neural Networks (PNN) and Learning Vector 

Quantization (LVQ) Neural Networks. We have also compared the performance of 

different types of feature extraction and classification techniques for the detection of 

ischemic ST deviation episodes, such as time-domain features with a rule based 

classifier, use of Principal Component Analysis (PCA) based features with a 

Backpropagation Neural Network, a Neural Network Ensemble and a Support Vector 

Machine (SVM) ensemble classifier. We have achieved a Sensitivity/Positive 

Predictivity of ~90% with the use of a novel Neural Network Ensemble which uses 

lead specific principal components as features. These results are highest in terms of 

accuracy when compared with the existing literature with the novelty lying in the use 

of lead specific KLT Bases and Ensemble Neural Classifiers for each lead. 

The work reported in this thesis can be used to establish the foundations of a practical 

stand-alone system for patient monitoring and the design of a multiple patient 

monitoring system as required in hospitals.  
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CHAPTER 1 
INTRODUCTION 

Electrocardiogram (ECG or EKG) is a noninvasive tool that has been in use for 

determining the cardiac status of a subject for almost a century. ECG presents an 

effective means of analyzing the heart rhythm and studying the conduction pathways 

in the heart. The in-depth examination of the ECG enables us to derive a number of 

informative measurements from the characteristic ECG waveforms. ECG analysis is 

the archetype for the timely detection of dangerous cardiac conditions in clinical 

settings. Such an examination or analysis is carried out practically by specially trained 

medical experts. Because of its systematic nature and the large amount of time spent 

in performing the task manually, ECG analysis is a good candidate for automation and 

comprises an important component in the field of biomedical signal processing.  

1.1 Impetus & Objectives of the Project 

This project is aimed at the development of an initially offline ECG Analyzer and 

an expert system for the classification and prediction of cardiac disorders. The 

incentive behind development of such a system is to aid a medical expert in 

interpreting the ECG by providing the ability of reliable and fast feature extraction 

(such as heart rate etc.) from the ECG, thus saving plenty of time and effort by the 

valued cardiac expert. The system is also to incorporate disease classification and 

prediction. These features of the system enable medical experts to respond to 

emergencies and monitor a larger number of patients simultaneously. These features 

can also help an average physician (one who is not a cardiac expert) to handle cardiac 

patients much more easily, effectively and accurately. Moreover, such a system also 

finds its application as a teaching aid for doctors and medical staff.  

The applications of such a system are difficult to summarize here, however one may 

easily deduce about the efficacy of the system, by keeping in mind that heart diseases 

are the dominant cause of natural deaths all over the world. In Pakistan, the major 

contributor to the short average life span is the development of cardiac diseases at 

relatively young ages and a lack of awareness amongst the masses. The situation is 
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worsened by the presence of only a small number of cardiac experts per unit of 

population and the lack of proper equipment in the hospitals. Commercial analysis 

software and Expert systems are costly and therefore are viewed only as prohibitive 

alternatives. In such a situation, locally developed software is bound to be of extreme 

assistance to the cardiac experts and the general physician alike. 

1.2 System Architecture 

The proposed architecture of the system comprises of the following major 

components: 

 
fig.  1-1 System Components 

Below a description of each of the sub systems is presented: 

1.2.1 User Interface 

It presents a high level interface to the medical expert for carrying out tasks such 

as marking and viewing annotations, viewing decision results and diagnosis reports  

etc.  

1.2.2 ECG Signal Analysis Component 

The objective of this component is to develop a subsystem which would calculate 

different time domain parameters from the given ECG signals after detection and 

removal of different artifacts (such as baseline wandering and noise etc.) to produce 

an analysis report which can be displayed to the medical expert using a user interface. 

This component is divided in to three further components. 

• Signal Conditioning  
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Signal conditioning involves the application of techniques for the removal of 

different types of artifacts (Baseline wandering, Noise etc.) from the ECG Signal. 

 
fig.  1-2 ECG Signal Analysis  

• ECG Segmentation 

ECG Segmentation is related the detection and delineation (determination of onset 

and offset) of the QRS Complex and the P/T waves which is required for 

subsequent feature extraction techniques. 

• Parameter Extraction 

Parameter extraction relates to the extraction of time domain parameters (such as 

cardiac rates, wave amplitudes and durations etc.) from the ECG using the 

information obtained from ECG Segmentation. A list of these parameters is given 

below: 

o Beat Level Parameters 

These include the following parameters: 

 P/T/U-Wave Parameters: Peak Location, Amplitude, 

Morphology of the P/T/U-wave 

 QRS Complex Parameters: Reference Point, Morphology, 

Axis, Q-Wave Location, Amplitude and Duration, R-Wave 

Location, Amplitude and Duration, S-Wave Location, 

Amplitude and Duration 

 Detection and Extraction of ST Segments 

 Calculation of QT, and PR Intervals 

o Multi-beat Parameters  

These include the following features: 
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 Heart Rate (HR or RR-Interval) Variability 

 PR Interval Variability 

 QT Interval Variability 

1.2.3 Diagnosis Expert System Component 

This component is aimed at the development of an expert system that would 

utilize the time domain features extracted during the analysis phase and combine with 

them other disease specific characteristics to detect the presence of different cardiac 

disorders in the given ECG Signals. The different categories to be considered at 

different stages during this phase include: 

• Arrhythmias 

E.g. Tachycardia, Bradycardia, Artrial and Ventrical Fibrillations and 

flutters etc. 

• Coronary Artery Diseases 

E.g. Myocardial Ischemia, Injury and Infarctions etc 

• Hypertrophies 

• Inflammations of the Heart 

E.g. Myocarditis and Pericarditis 

• Conduction Problems 

E.g. Heart Blocks, Bundle Branch Blocks etc 

This component logically comprises of two modules, i.e. Feature Extraction and 

Classification (see figure below). 

 
fig.  1-3 Diagnosis Expert System Component 
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A variety of feature extraction techniques such as Discrete Wavelet Transform, 

Discrete Fourier Transform, and Principal Component Analysis etc. can be employed 

along with time domain features obtained from the analysis phase. For the purpose of 

classification we can use Rule Based Classification, Fuzzy Inference Systems, Neural 

Networks, Support Vector Machines etc. 

1.2.4 Prediction Component 

This is the fourth component of the system in which the temporal probability 

values for the occurrence of specific cardiac events or disorders are to be calculated 

before time. This component in the overall system design has not been considered in 

this thesis. 

1.2.5 Hardware Interface 

This component involves the integration of the system with a commercially 

available ECG Machine. This phase has not been considered for implementation in 

this thesis. 

1.2.6 System Core 

The task of this component is to coordinate the flow of information between 

different system level components. 

1.3  Organization of the Thesis 

This document serves as a detailed description of the project and presents in 

detail, different steps involved in the development of the ECG Signal Analysis and 

Diagnosis Components. Chapter-1 presents the introduction to the project. Chapter-2 

gives an introduction to the working of the heart. Chapter-3 provides an overview of 

the characteristics of different datasets used in this work. Chapter-4 describes 

different techniques for the removal of artifacts from the ECG techniques for ECG 

with chapter-5 describing the QRS Detection and Delineation Strategies. Chapter-6 

explains the procedures for the detection and Feature extraction in relation to the T 

and P-waves whereas in chapter-7, Methods for the classification of different types of 
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arrhythmias are given. Chapter-8 gives the details techniques implemented for the 

detection of ST Segment Deviation Episodes. Chapter-9 presents the conclusions and 

future work. Each chapter describes the objectives and importance of the task it 

addresses, presents a review of the existing methodologies, describes in detail the 

implemented schemes, and gives a programmer function reference and quality 

evaluation for the implemented techniques. 
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CHAPTER 2  
HEART & THE ECG 

In this chapter we describe the structural and functional working of the heart along 

with a detailed overview of electrical activity within the heart that leads to rhythmic 

operation of the heart and can be observed, non-invasively, through the 

electrocardiogram. We also delineate different types of ECG systems that are used for 

ECG acquisition. An account of the diagnostic use of the ECG and its limitations is 

also given.  

2.1 Anatomy and working of the Heart 

The heart is a four-chambered pump, located in the chest cavity surrounded by a 

membrane called pericardium, which serves two purposes: to move oxygen depleted 

blood to the lungs to exchange CO2 and O2, and to move oxygen rich blood from the 

lungs to the rest of the body, including the heart itself.  The top two chambers of the 

heart are called the atria, which receive blood from the veins of the circulatory 

system.  The lower two chambers are called the ventricles and provide the main 

pumping force needed to push the blood to the lungs or the rest of the body. 

In general, blood moves through the heart in following series of steps, as shown in 

Figure 2.1. 

• First un-oxygenated blood moves into the Right Atria (3) of the heart 

through the Superior (1) and Inferior (2) Vena Cava. 

• The Atria then contracts and pushes the blood through a one-way valve 

(called the Tricuspid valve (4)) into the Right Ventricle (5). 

• The Right Ventricle then contracts, pushing the blood out of the heart to 

the pulmonary arteries (7) to the lungs for the exchange of CO2 for O2. 

• The blood then returns to the heart’s Left Atria (9) via the pulmonary veins 

(8). 

• The Atria again contracts and push the blood through another one-way 

valve (called the Mitral valve (10) into the left Ventricle (11). 
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• The left Ventricle then contracts, pushing the blood out of the heart to the 

Aorta (13), which then branches off to the rest of the arteries of the human 

body. 

 
fig.  2-1 Blood Flow in the Heart 

The heart gets its own blood supply through the coronary arteries which stem from the 

aorta as shown below.  

 
fig.  2-2 Coronary Arteries 

2.2 Electrical Activity in the Heart 

In this section we describe how the pumping action of the heart is triggered by 

electric impulses generated from within the heart. We first detail the concept of action 

potentials and the way these action potentials cause muscular contraction in the heart 

muscle producing the pumping action of the heart. We then discuss how these 
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impulses are generated and conducted to the heart muscle by explaining the 

functioning of cardiac pacemakers and the electrical conduction system of the heart.  

2.2.1 Action Potentials and the Heart Muscle (Myocardium) 

The most important function of heart cells is to contract rhythmically and 

systematically. The contraction of the heart as a whole is as a direct result of the 

contraction of all of the tiny cells of the heart muscle. These contractions are triggered 

by an electrical impulse known as the action potential [1]. Before discussing the 

cardiac action potential, we must first know what an action potential is. 

A thin membrane surrounds each cell in our body. Different ions (small charged 

molecules can move across the cell membrane through the special ion channels. The 

channels can freely let one type of ions go through the membrane and block passage 

of other types of ions. Due to such a specific permeability a concentration gradient is 

established across the cellular membrane. Because ions are charged molecules, an 

electrical gradient is also established across the cell membrane. This imbalance in 

electrical charge across the cell membrane is known as the membrane potential. Every 

cell in our body is slightly more negative inside then outside with a resting membrane 

potential of approximately (- 0.1 V or -100mV). 

Some of the cells (called excitable cells) are capable to rapidly reverse their resting 

membrane potential from negative resting values to slightly positive values. This 

rapid change in membrane potential is called an action potential. The action potential 

is brought on by a rapid change in membrane permeability to certain ions. Excitable 

cells include neurons (nerve cells) and muscle cells. 

Cardiac muscle has some similarities to neurons and muscle cells, as well as 

important unique properties. Like a neuron, a given myocardial cell has a negative 

membrane potential when at rest. Stimulation above a threshold value induces the 

opening of voltage-gated ion channels and a flood of cations into the cell. When the 

threshold is met, an action potential initiates. This causes the positively charged ions 

to enter the cell [depolarization]. Like skeletal muscle, depolarization causes the 

opening of voltage-gated calcium channels and entry of Ca2+. This influx of calcium 

causes calcium-induced calcium release from the calcium storing sarcoplasmic 

reticulum in the cell, and the increase in myoplasmic free Ca2+ concentration causes 

muscle contraction. After a delay (the absolute refractory period), Potassium channels 



 11

reopen and the resulting flow of K+ out of the cell causes repolarization to the resting 

state.  

The standard model used to understand the cardiac action potential is the action 

potential of the ventricular myocyte. The action potential has 5 phases (numbered 0-

4). Phase 4 is the resting membrane potential, and describes the membrane potential 

when the cell is not being stimulated. 

 
fig.  2-3 Action Potentials in the Heart 

Once the cell is electrically stimulated (typically by an electric current from an 

adjacent cell), it begins a sequence of actions involving the influx and efflux of 

multiple cations and anions that together produce the action potential of the cell, 

propagating the electrical stimulation to the cells that lie adjacent to it. In this fashion, 

an electrical stimulation is conducted from one cell to all the cells that are adjacent to 

it, to all the cells of the heart. 

2.2.1.1 Phase 4 

Phase 4 is the resting membrane potential. This is the period that the cell remains 

in until it is stimulated by an external electrical stimulus (typically an adjacent cell). 

This phase of the action potential is associated with diastole of the chamber of the 

heart. 

2.2.1.2 Phase 0 

Phase 0 is the rapid depolarization phase. The slope of phase 0 represents the 

maximum rate of depolarization of the cell and is known as Vmax. This phase is due 

to the opening of the fast Na+ channels causing a rapid increase in the membrane 
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conductance to Na+ (GNa) and thus a rapid influx of Na+ ions (INa), also known as 

funny current, into the cell; a Na+ current. 

The ability of the cell to open the fast Na+ channels during phase 0 is related to the 

membrane potential at the moment of excitation. If the membrane potential is at its 

baseline (about -85 mV), all the fast Na+ channels are closed, and excitation will open 

them all, causing a large influx of Na+ ions. If, however, the membrane potential is 

less negative, some of the fast Na+ channels will be in an inactivated state insensitive 

to opening, thus causing a lesser response to excitation of the cell membrane and a 

lower Vmax. For this reason, if the resting membrane potential becomes too positive, 

the cell may not be excitable, and conduction through the heart may be delayed, 

increasing the risk for arrhythmias. 

2.2.1.3 Phase 1 

Phase 1 of the action potential occurs with the inactivation of the fast Na+ 

channels. The transient net outward current causing the small downward deflection of 

the action potential is due to the movement of K+ and Cl- ions, carried by the Ito1 and 

Ito2 currents, respectively. Particularly the Ito1 contributes to the "notch" of some 

ventricular cardiomyocyte action potentials. 

2.2.1.4 Phase 2 

This "plateau" phase of the cardiac action potential is sustained by a balance 

between inward movement of Ca2+ (ICa) through L-type calcium channels and 

outward movement of K+ through the slow delayed rectifier potassium channels, IKs.  

2.2.1.5 Phase 3 

During phase 3 of the action potential, the L-type Ca2+ channels close, while the 

slow delayed rectifier (IKs) K+ channels are still open. This ensures a net outward 

current, corresponding to negative change in membrane potential, thus allowing more 

types of K+ channels to open. These are primarily the rapid delayed rectifier K+ 

channels (IKr) and the inwardly rectifiyng K+ current, IK1. This net outward, positive 

current (equal to loss of positive charge from the cell) causes the cell to repolarize. 

The delayed rectifier K+ channels close when the membrane potential is restored to 
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about -80 to -85 mV, while IK1 remains conducting throughout phase 4, contributing 

to set the resting membrane potential. 

2.2.2 Initiation of Action Potentials: Pacemakers 

The rhythm of the heart is initiated by action potentials generated by certain cells 

of the heart that have the ability to undergo spontaneous depolarization, in which an 

action potential is generated without any influence from nearby cells. This is also 

known as automaticity. The cells that can undergo spontaneous depolarization the 

fastest are the primary pacemaker cells of the heart, and set the heart rate. Usually, 

these are cells in the SA node of the heart. Electrical activity that originates from the 

SA node is propagated to the rest of the heart. The fastest conduction of electrical 

activity is via the electrical conduction system of the heart shown in the figure below.  

 
fig.  2-4 Electrical Conduction Pathways in the Heart 

Although all of the heart's cells possess the ability to generate these electrical 

impulses (or action potentials), a specialized portion of the heart, called the sinoatrial 

node, is responsible for the whole heart's beat. 

The sinoatrial node (SA node) is a group of cells positioned on the wall of the right 

atrium, near the entrance of the superior vena cava. These cells are modified cardiac 

myocytes. They possess some contractile filaments, though they only contract 

relatively weakly. 

Cells in the SA node will spontaneously depolarize, resulting in contraction, 

approximately 100 times per minute. This native rate is constantly modified by the 

activity of sympathetic and parasympathetic nerve fibers, so that the average resting 
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cardiac rate in adult humans is about 60 beats per minute. Because the sinoatrial node 

is responsible for the rest of the heart's electrical activity, it is sometimes called the 

primary pacemaker. 

If the SA node doesn't function, or the impulse generated in the SA node is blocked 

before it travels down the electrical conduction system, a group of cells further down 

the heart will become the heart's pacemaker, this is known as an ectopic pacemaker. 

These cells form the atrioventricular node (AV node), which is an area between the 

atria and ventricles, within the atrial septum. 

The cells of the AV node normally discharge at about 40-60 beats per minute, and are 

called the secondary pacemaker. 

Further down the electrical conducting system of the heart, the Bundle of His, the left 

and right branches of this bundle, and the Purkinje fibres, will also produce a 

spontaneous action potential if they aren't inhibited by other electrical activity. These 

tertiary pacemakers fire at a rate of 30-40 per minute. 

Even individual cardiac muscle cells will contract rhythmically by themselves. 

The reason the SA node controls the whole heart is that its action potentials are 

released most often; this triggers other cells to generate their own action potentials. In 

the muscle cells, this will produce contraction. The action potential generated by the 

SA node, passes down the cardiac conduction system, and arrives before the other 

cells have had a chance to generate their own spontaneous action potential.  

2.2.3 Generation of Action Potentials in Pacemaker Cells 

There are three main stages in the generation of an action potential in a pacemaker 

cell. Since the stages are analogous to contraction of cardiac muscle cells, they have 

the same naming system. This can lead to some confusion. There is no phase one or 

two, just phases zero, three and four.  

2.2.3.1 Phase 4 - Pacemaker potential 

The key to the rhythmical firing of pacemaker cells is that, unlike muscle and 

neurons, these cells will slowly depolarize by themselves. As in all other cells, the 

resting potential of a pacemaker cell (-60mV to -70mV) is caused by a continuous 

outflow or "leak" of potassium ions through ion channel proteins in the membrane 

that surrounds the cells. The difference is that this potassium permeability decreases 
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as time goes on, partly causing the slow depolarization. As well as this, there is a slow 

inward flow of sodium, called the funny current. This all serves to make the cell more 

positive. This relatively slow depolarization continues until the threshold potential is 

reached. Threshold is between -40mV and -50mV. When threshold is reached, the 

cells enter phase 0.  

2.2.3.2  Phase 0 - Upstroke 

Though much faster than the depolarization caused by the funny current and 

decrease in potassium permeability above, the upstroke in a pacemaker cell is 

relatively slow compared to that in an axon. The SA and AV node do not have fast 

sodium channels like neurons, and the depolarization is mainly caused by a slow 

influx of calcium ions. (The funny current also increases). The calcium is let into the 

cell by voltage-sensitive calcium channels that opened when the threshold was 

reached.  

2.2.3.3  Phase 3 - Repolarization 

The calcium channels are rapidly inactivated, soon after they opened. Sodium 

permeability is also decreased. Potassium permeability is increased, and the efflux of 

potassium (loss of positive ions) slowly repolarizes the cell.  

2.2.4 Transmission of Electrical Activity in the Heart 

Electrical activity in the heart can be shown in the figure below. As we can see 

that first the electrical potential is originated in SA node. This SA node then 

depolarizes and electrical activity goes rapidly to AV node. Conduction through AV 

node is very slow but then depolarization moves rapidly through ventricular 

conducting system to the apex of heart from where depolarization moves upward and 

outward through the Purkinje fiber. The Epicardium is the last part of the ventricular 

wall to receive the depolarization stimulus. The generated potential difference is 

propagated to the surface of the body through the tissues in contact with the heart and 

this fact can be used to monitor electrical activity in the heart, non-invasively. 
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fig.  2-5 Electrical Activity in the Heart 

 
fig.  2-6 The Epicardium 

2.3 Measurement of Cardiac Electrical Activity: ECG 

The electrical activity in the heart can be measured, non-invasively, with the use 

of the electrocardiogram which records this electrical activity over time. The ECG 

device was invented in 1901 by Willem Einthoven, working in Leiden, The 

Netherlands who used the string galvanometer invented by him along with 

electromechanical recording and display equipment to record the electrical activity of 

the heart as shown below. Einthoven assigned the letters P, Q, R, S and T to the 

various deflections in the ECG, and described the electrocardiographic features of a 

number of cardiovascular disorders. In 1924, he was awarded the Nobel Prize in 

Medicine for his achievement.  
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fig.  2-7 The ECG Machine by Einthoven [2] 

An electrocardiogram is obtained by measuring electrical potential between various 

points of the body using a biomedical instrumentation amplifier. A lead records the 

electrical signals of the heart from a particular combination of recording electrodes 

which are placed at specific points on the patient's body. As a depolarization 

wavefront (or mean electrical vector) moves toward a positive electrode, it creates a 

positive deflection on the ECG in the corresponding lead. When a depolarization 

wavefront (or mean electrical vector) moves away from a positive electrode, it creates 

a negative deflection on the ECG in the corresponding lead. When a depolarization 

wavefront (or mean electrical vector) moves perpendicular to a positive electrode, it 

creates an equiphasic (or isoelectric) complex on the ECG. It will be positive as the 

depolarization wavefront (or mean electrical vector) approaches (A), and then become 

negative as it passes by (B). This phenomenon is shown in the figure below.  

 
fig.  2-8 Effect of the Movement of Electrical Impulse towards and away from an electrode [2] 
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The electrical activity of the specialized conduction tissues is not apparent on the 

surface electrocardiogram (ECG). This is due to the relatively small mass of these 

tissues compared to the myocardium. 

2.4 ECG Systems 

In this section we detail different types of ECG systems in use for medical diagnosis.  

2.4.1 The 12-Lead ECG System 

The 12-lead ECG system consists of 12 leads that are placed on the limbs and the 

chest. In this system there are two types of leads—unipolar and bipolar. The former 

have an indifferent electrode at the center of the Einthoven’s triangle (which can be 

likened to a ‘neutral’ of the wall socket) at zero potential. The direction of these leads 

is from the “center” of the heart radially outward and includes the precordial (chest) 

leads and limb leads— VL, VR, & VF. The latter, in contrast, have both the 

electrodes at some potential and the direction of the corresponding electrode is from 

the electrode at lower potential to the one at higher potential, e.g., in limb lead I, the 

direction is from left to right. These include the limb leads-I, II, and III. These leads 

are described in more detail in the following.  

2.4.1.1 Limb Leads 

Leads I, II and III are the so-called limb leads as their corresponding electrodes 

are placed on the limbs of the patient. They form the basis of what is known as 

Einthoven's triangle (see figure below). Eventually, electrodes were invented that 

could be placed directly on the patient's skin. Even though the buckets of salt water 

are no longer necessary, the electrodes are still placed on the patient's arms and legs to 

approximate the signals obtained with the buckets of salt water. They remain the first 

three leads of the modern 12 lead ECG. 

• Lead-I is a dipole with the negative electrode on the right arm and the 

positive electrode on the left arm.  

• Lead-II is a dipole with the negative electrode on the right arm and the 

positive electrode on the left leg.  
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• Lead-III is a dipole with the negative electrode on the left arm and the 

positive electrode on the left leg.  

 
 fig.  2-9 Limb Lead Placement 

 
fig.  2-10 The Einthoven Triangle 

2.4.1.2 Augmented Limb Leads 

Leads aVR, aVL, and aVF are augmented limb leads. They are derived from the 

same three electrodes as leads I, II, and III. However, they view the heart from 

different angles (or vectors) because the negative electrode for these leads is derived 

by adding leads I, II, and III together and plugging them into the negative terminal to 

form Wilson’s Central Terminal for the EKG machine. This zeroes out the negative 

electrode and allows the positive electrode to become the "exploring electrode" or a 

unipolar lead. This is possible because Einthoven's Law states that I + (-II) + III = 0. 

The equation can also be written I + III = II. It is written this way (instead of I + II + 

III = 0) because Einthoven reversed the polarity of lead II in Einthoven's triangle, 
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possibly because he liked to view upright QRS complexes. Wilson's central terminal 

paved the way for the development of the augmented limb leads aVR, aVL, aVF and 

the precordial leads V1, V2, V3, V4, V5, and V6. 

• Lead aVR or "augmented vector right" has the positive electrode (white) 

on the right arm. The negative electrode is a combination of the left arm 

(black) electrode and the left leg (red) electrode, which "augments" the 

signal strength of the positive electrode on the right arm.  

• Lead aVL or "augmented vector left" has the positive (black) electrode on 

the left arm. The negative electrode is a combination of the right arm 

(white) electrode and the left leg (red) electrode, which "augments" the 

signal strength of the positive electrode on the left arm.  

• Lead aVF or "augmented vector foot" has the positive (red) electrode on 

the left leg. The negative electrode is a combination of the right arm 

(white) electrode and the left arm (black) electrode, which "augments" the 

signal of the positive electrode on the left leg.  

The augmented limb leads aVR, aVL, and aVF are amplified in this way because the 

signal is too small to be useful when the negative electrode is Wilson's central 

terminal. Together with leads I, II, and III, augmented limb leads aVR, aVL, and aVF 

form the basis of the hexaxial reference system, which is used to calculate the heart's 

electrical axis in the frontal plane.  

 
fig.  2-11 Augmented Limb Lead Placement 

2.4.1.3 Precordial Leads 

The precordial leads V1, V2, V3, V4, V5, and V6 are placed directly on the chest. 

Because of their close proximity to the heart, they do not require augmentation. 

Wilson's central terminal is used for the negative electrode, and these leads are 

considered to be unipolar. The precordial leads view the heart's electrical activity in 
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the so-called horizontal plane. The heart's electrical axis in the horizontal plane is 

referred to as the Z axis. 

Leads V1, V2, and V3 are referred to as the right precordial leads and V4, V5, and V6 

are referred to as the left precordial leads. 

The QRS complex should be negative in lead V1 and positive in lead V6. The QRS 

complex should show a gradual transition from negative to positive between leads V2 

and V4. The equiphasic lead is referred to as the transition lead. When the transition 

occurs earlier than lead V3, it is referred to as an early transition. When it occurs later 

than lead V3, it is referred to as a late transition. There should also be a gradual 

increase in the amplitude of the R wave between leads V1 and V4. This is known as R 

wave progression. Poor R wave progression is a nonspecific finding. It can be caused 

by conduction abnormalities, myocardial infarction, cardiomyopathy, and other 

pathological conditions. 

• Lead V1 is placed in the fourth intercostal space to the right of the 

sternum.  

• Lead V2 is placed in the fourth intercostal space to the left of the sternum.  

• Lead V3 is placed directly between leads V2 and V4.  

• Lead V4 is placed in the fifth intercostal space in the midclavicular line  

• Lead V5 is placed directly between leads V4 and V6.  

• Lead V6 is placed horizontal with V4 in the midaxillary line.  

 

 
fig.  2-12 Precordial Lead Placement 

Additional leads can be added by the physician if required.  
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2.4.1.4 Ground 

An additional electrode is present in modern four-lead and twelve-lead ECGs. 

This is the ground lead and is placed on the right leg by convention, although in 

theory it can be placed anywhere on the body. With a three-lead ECG, when one 

dipole is viewed, the remaining lead becomes the ground lead by default. 

2.4.1.5 Clinical Lead Groups 

There are twelve leads in total, each recording the electrical activity of the heart 

from a different perspective, which also correlate to different anatomical areas of the 

heart for the purpose of identifying acute coronary ischemia or injury. Two leads that 

look at the same anatomical area of the heart are said to be contiguous as shown in the 

chart below. 

• The inferior leads (leads II, III and aVF) look at electrical activity from the 

vantage point of the inferior (or diaphragmatic) wall of the left ventricle.  

• The lateral leads (I, aVL, V5 and V6) look at the electrical activity from 

the vantage point of the lateral wall of left ventricle. Because the positive 

electrode for leads I and aVL are located on the left shoulder, leads I and 

aVL are sometimes referred to as the high lateral leads. Because the 

positive electrodes for leads V5 and V6 are on the patient's chest, they are 

sometimes referred to as the low lateral leads.  

• The septal leads, V1 and V2 look at electrical activity from the vantage 

point of the septal wall of the left ventricle. They are often grouped 

together with the anterior leads.  

• The anterior leads, V3 and V4 look at electrical activity from the vantage 

point of the anterior wall of the left ventricle.  

• In addition, any two precordial leads that are next to one another are 

considered to be contiguous. For example, even though V4 is an anterior 

lead and V5 is a lateral lead, they are contiguous because they are next to 

one another.  

• Lead aVR offers no specific view of the left ventricle. Rather, it views the 

inside of the endocardial wall from its perspective on the right shoulder.  
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fig.  2-13 Clinical Lead Groups 

2.4.2 Modifications to the 12 lead System 

In exercise ECG, the signal is distorted because of muscular activity, respiration, 

and electrode artifacts due to perspiration and electrode movements. The distortion 

due to muscular activation can be minimized by placing the electrodes on the 

shoulders and on the hip instead of the arms and the leg, as suggested by R. E. Mason 

and I. Likar (1966). The Mason-Likar modification is the most important modification 

of the 12-lead system used in exercise ECG. The accurate location for the right arm 

electrode in the Mason-Likar modification is a point in the infraclavicular fossa 

medial to the border of the deltoid muscle and 2 cm below the lower border of the 

clavicle. The left arm electrode is located similarly on the left side. The left leg 

electrode is placed at the left iliac crest. The right leg electrode is placed in the region 

of the right iliac fossa. The precordial leads are located in the Mason-Likar 

modification in the standard places of the 12-lead system.  

 
fig.  2-14 ML Lead Placement 
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In ambulatory monitoring of the ECG, as in the Holter recording, the electrodes are 

also placed on the surface of the thorax instead of the extremities. 

2.4.3 Holter (or Ambulatory) ECG (H-ECG) 

The Holter (after its inventor Dr. Norman J. Holter) or Ambulatory ECG is used 

for long-term monitoring the electrical activity of the heart. The number and position 

of leads varies by model, but most Holter monitors employ from two to eight.  

 
fig.  2-15 The H-ECG 

H-ECG is the most widely used method to evaluate symptoms suggestive of cardiac 

rhythm disturbances (palpitations, dizziness, presyncope). H-ECG is also useful in 

diagnosis of type of arrhythmias and in identification of the likely underlying 

mechanism (particularly for supraventricular arrhythmias).  

Post-myocardial infarction patients have an increase risk of sudden death, and H-ECG 

is usually performed before hospital discharge. Several studies performed before the 

advent of thrombolysis have demonstrated that presence of ventricular arrhythmias 

(frequent PVC and high grade ventricular ectopy, as repetitive, multiform PVC or 

VT) has been associated with a higher mortality rate among MI survivors. 

Time and frequency domain analysis of HRV obtained through H-ECG is today a 

well recognized technique capable of providing information on autonomic modulation 

of the sinus node and of stratifying risk, particularly after myocardial infarction. 

H-ECG has been widely used to evaluate the effects of anti-arrhythmic therapy. 

However, several limitations affect its usefulness, specifically: day-to-day variability 

in the frequency and type of arrhythmias in many patients, lack of correlation between 

arrhythmias suppression after an intervention and subsequent outcome, uncertain 

guidelines for the degree of suppression required to demonstrate an effect. 
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H-ECG is useful for documenting an adequate control of the ventricular rate in 

patients with continuous atrial arrhythmias, as chronic atrial fibrillation, because it 

provides data on the heart rate during the patient’s typical daily activities. 

Albeit its usefulness, H-ECG carries following demerits with its use when compared 

with the normal paper 12 lead ECG: 

• We can’t measure several diseases with H-ECG e.g. axis deviation for 

which we have to look at leads I and AVF and this is not possible in H-

ECG. 

• H-ECG cannot be used as screening tool for detecting coronary artery 

disease 

• H-ECG cannot be used for evaluating severity of ischemia in individual 

patients 

• We can detect ventricular hypertrophy using H-ECG but we can’t 

distinguish left ventricle hypertrophy from that of right ventricle 

hypertrophy 

• Before leaving the topic of H-ECG, it should be noted that although we 

can’t use H-ECG for the diagnosis of certain diseases, but it is very useful 

for the research purpose and for the development of various ECG 

analyzers. 

2.5 Waves and Intervals in the ECG  

A typical ECG tracing of a normal heartbeat (shown below) consists of a P wave, 

a QRS complex and a T wave.  

 
fig.  2-16 Components of a Typical ECG Signal on the ECG Paper 
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A small U wave is normally visible in 50 to 75% of ECGs. The baseline voltage of the 

electrocardiogram is known as the isoelectric line. Typically the isoelectric line is 

measured as the portion of the tracing following the T wave and preceding the next P 

wave. 

2.5.1 P wave 

During normal atrial depolarization, the mean electrical vector is directed from the 

SA node towards the AV node, and spreads from the right atrium to the left atrium 

(see figure below) 

 
fig.  2-17 Generation of the P-wave 

This turns into the P wave on the ECG, which is upright in II, III, and aVF (since the 

general electrical activity is going toward the positive electrode in those leads), and 

inverted in aVR (since it is going away from the positive electrode for that lead). A P 

wave must be upright in leads II and aVF and inverted in lead aVR to designate a 

cardiac rhythm as Sinus Rhythm. 

• The relationship between P waves and QRS complexes helps distinguish 

various cardiac arrhythmias.  

• The shape and duration of the P waves may indicate atrial enlargement.  

2.5.2 PR interval 

The PR interval is measured from the beginning of the P wave to the beginning of 

the QRS complex. It is usually 120 to 200 ms long.  

• A prolonged PR interval may indicate a first degree heart block.  
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• A short PR interval may indicate a pre-excitation syndrome via an 

accessory pathway that leads to early activation of the ventricles, such as 

seen in Wolff-Parkinson-White syndrome.  

• A variable PR interval may indicate other types of heart block.  

• PR segment depression may indicate atrial injury or pericarditis.  

• Variable morphologies of P waves in a single ECG lead is suggestive of an 

ectopic pacemaker rhythm such as wandering pacemaker or multifocal 

atrial tachycardia  

2.5.3 QRS Complex 

After brief delay at the AV node the impulse originating from the SA node 

traverses the common bundle of His and the left and right bundle branches and then 

enters the Interventricular septum causing myocardial depolarization with electric 

vextor directed right and downward causing a negative Q wave in Lead-I and an 

upward deflection in aVF. The Impulse continues along conduction system causing 

depolarization of ventricular (aptical) myocardium with electric vector directed down 

and left producing the R-wave. As depolarization progresses over ventricles, vector 

becomes to shift superiorly as well as to the left thus extending the R wave in lead-I 

and causing downward deflection in aVF. Thus The QRS complex is a structure on 

the ECG that corresponds to the depolarization of the ventricles. Because the 

ventricles contain more muscle mass than the atria, the QRS complex is larger than 

the P wave. In addition, because the His/Purkinje system coordinates the 

depolarization of the ventricles, the QRS complex tends to look "spiked" rather than 

rounded due to the increase in conduction velocity. A normal QRS complex is 0.06 to 

0.10 sec (60 to 100 ms) in duration. 

 
fig.  2-18 Generation of the Q-wave 
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fig.  2-19 Generation of the R-wave 

 
fig.  2-20 Generation of the S-wave 

Not every QRS complex contains a Q wave, an R wave, and an S wave. By 

convention, any combination of these waves can be referred to as a QRS complex. 

However, correct interpretation of difficult ECGs requires exact labeling of the 

various waves. Some authors use lowercase and capital letters, depending on the 

relative size of each wave. For example, an Rs complex would be positively deflected, 

while a rS complex would be negatively deflected. If both complexes were labeled 

RS, it would be impossible to appreciate this distinction without viewing the actual 

ECG. 

 
fig.  2-21 QRS Morphologies 
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• The duration, amplitude, and morphology of the QRS complex is useful in 

diagnosing cardiac arrhythmias, conduction abnormalities, ventricular 

hypertrophy, myocardial infarction, electrolyte derangements, and other 

disease states.  

• Q waves can be normal (physiological) or pathological. Normal Q waves, 

when present, represent depolarization of the interventricular septum. For 

this reason, they are referred to as septal Q waves, and can be appreciated 

in the lateral leads I, aVL, V5 and V6.  

• Q waves greater than 1/3 the height of the R wave, greater than 0.04 sec 

(40 ms) in duration, or in the right precordial leads are considered to be 

abnormal, and may represent myocardial infarction.  

2.5.4 ST segment 

The ST segment connects the QRS complex and the T wave and has a duration of 

0.08 to 0.12 sec (80 to 120 ms). It starts at the J point (junction between the QRS 

complex and ST segment) and ends at the beginning of the T wave. However, since it 

is usually difficult to determine exactly where the ST segment ends and the T wave 

begins, the relationship between the ST segment and T wave should be examined 

together. The typical ST segment duration is usually around 0.08 sec (80 ms). It 

should be essentially level with the PR and TP segment. 

• The normal ST segment has a slight upward concavity.  

• Flat, downsloping, or depressed ST segments may indicate coronary 

ischemia.  

• ST segment elevation may indicate myocardial infarction. An elevation of 

>1mm (0.1mV) and longer than 80 milliseconds following the J-point. 

This measure has a false positive rate of 15-20% (which is slightly higher 

in women than men) and a false negative rate of 20-30%.  

2.5.5 T wave 

The T wave represents the repolarization (or recovery) of the ventricles. When the 

heart is fully depolarized, there is no electrical activity for a brief period of time (ST 

Segment). Then repolarization begins in the epicardium and moves to the 
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endocardium causing the T-wave. The interval from the beginning of the QRS 

complex to the apex of the T wave is referred to as the absolute refractory period. The 

last half of the T wave is referred to as the relative refractory period (or vulnerable 

period). 

 
fig.  2-22 ST Segment and the T-wave 

In most leads, the T wave is positive. However, a negative T wave is normal in lead 

aVR. Lead V1 may have a positive, negative, or biphasic T wave. In addition, it is not 

uncommon to have an isolated negative T wave in lead III, aVL, or aVF. 

• Inverted (or negative) T waves can be a sign of coronary ischemia, 

Wellens' syndrome, left ventricular hypertrophy, or CNS disorder.  

• Tall or "tented" symmetrical T waves may indicate hyperkalemia. Flat T 

waves may indicate coronary ischemia or hypokalemia.  

• The earliest electrocardiographic finding of acute myocardial infarction is 

sometimes the hyperacute T wave, which can be distinguished from 

hyperkalemia by the broad base and slight asymmetry.  

• When a conduction abnormality (e.g., bundle branch block, paced rhythm) 

is present, the T wave should be deflected opposite the terminal deflection 

of the QRS complex. This is known as appropriate T wave discordance.  

2.5.6 QT interval 

The QT interval is measured from the beginning of the QRS complex to the end of 

the T wave. A normal QT interval is usually about 0.40 seconds. The QT interval as 

well as the corrected QT interval are important in the diagnosis of long QT syndrome 

and short QT syndrome. The QT interval varies based on the heart rate, and various 

correction factors have been developed to correct the QT interval for the heart rate. 
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The most commonly used method for correcting the QT interval for rate is the one 

formulated by Bazett and published in 1920. Bazett's formula is,  

C
QTQT
RR

=  

where QTc is the QT interval corrected for rate, and RR is the interval from the onset 

of one QRS complex to the onset of the next QRS complex, measured in seconds. 

However, this formula tends to be inaccurate, and over-corrects at high heart rates and 

under-corrects at low heart rates. 

2.5.7 U wave 

The U wave is not always seen. It is typically small, and, by definition, follows 

the T wave. U waves are thought to represent repolarization of the papillary muscles 

or Purkinje fibers. Prominent U-waves are most often seen in hypokalemia, but may 

be present in hypercalcemia, thyrotoxicosis, or exposure to digitalis, epinephrine, and 

Class 1A and 3 antiarrhythmics, as well as in congenital long QT syndrome and in the 

setting of intracranial hemorrhage. An inverted U wave may represent myocardial 

ischemia or left ventricular volume overload.  

2.5.8 ECG Axis 

The heart's electrical axis refers to the general direction of the heart's 

depolarization wavefront (or mean electrical vector) in the frontal plane. It is usually 

oriented in a right shoulder to left leg direction, which corresponds to the left inferior 

quadrant of the hexaxial reference system, although -30o to +90o is considered to be 

normal. 

• Left axis deviation (-30o to -90o) may indicate left anterior fascicular block 

or Q waves from inferior Myocardial Infarction (MI).  

• Right axis deviation (+90o to +180o) may indicate left posterior fascicular 

block, Q waves from high lateral MI, or a right ventricular strain pattern.  

In the setting of right bundle branch block, right or left axis deviation may 

indicate bifascicular block.  
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fig.  2-23 Axis Estimation 

2.6 Diagnostic Utility of the ECG 

The following disorders can be detected with the ECG: 

• Abnormally fast or irregular heart rhythms. 

• Abnormally slow heart rhythms. 

• Abnormal conduction of cardiac impulses, which may suggest underlying 

cardiac or metabolic disorders. 

• Evidence of the occurrence of a prior heart attack (myocardial infarction). 

• Evidence of an evolving, acute heart attack. 

• Evidence of an acute impairment to blood flow to the heart during an 

episode of a threatened heart attack (unstable angina). 

• Adverse effects on the heart from various heart diseases or systemic 

diseases (such as high blood pressure, thyroid conditions, etc.). 

• Adverse effects on the heart from certain lung conditions (such as 

emphysema, pulmonary embolus (blood clots to lung), etc.). 

• Certain congenital heart abnormalities. 

• Evidence of abnormal blood electrolytes (potassium, calcium, 

magnesium). 

• Evidence of inflammation of the heart or its lining (myocarditis, 

pericarditis). 

2.7 Limitations of the ECG 

Some of the limitations of the ECG are given below. 
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• The ECG is a static picture and may not reflect severe underlying heart 

problems at a time when the patient is not having any symptoms. The most 

common example of this is in a patient with a history of intermittent chest 

pain due to severe underlying coronary artery disease. This patient may 

have an entirely normal ECG at a time when he is not experiencing any 

symptoms. In such instances, the ECG as recorded during an exercise 

stress test may reflect an underlying abnormality while the ECG taken at 

rest may be normal. 

• Many abnormal patterns on an ECG may be non-specific, meaning that 

they may be observed with a variety of different conditions. They may 

even be a normal variant and not reflect any abnormality at all. These 

conditions can often be sorted out by a physician with a detailed 

examination, and occasionally other cardiac tests (e.g., echocardiogram, 

exercise stress test). 

• In some instances, the ECG may be entirely normal despite the presence of 

an underlying cardiac condition that normally would be reflected in the 

ECG. The reasons for this are largely unknown, but it is important to 

remember that a normal ECG does not necessarily preclude the possibility 

of underlying heart disease. Furthermore, a patient with heart symptoms 

can frequently require additional evaluation and testing. 
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CHAPTER 3 
ECG DATABASES 

In this work we have used different ECG databases from Physionet [3] for assessing 

the quality of the algorithms developed. Physionet is a resource for biomedical signals 

and applications and it offers free access via the web to large collections of recorded 

physiologic signals (more than 40 databases) and related open-source software. In this 

chapter we give a brief description of different ECG databases used in this research in 

order to acquaint the reader with their acquisition methodologies and statistical 

characteristics. 

3.1 The QT-Database 

The QT Database [4] contains a wide variety of ECG morphologies and a significant 

number of patient records for performance evaluation of wave detection and 

segmentation algorithms for the ECG. The QT Database contains a total of 105 

fifteen-minute excerpts of two channel ECGs, selected to avoid significant baseline 

wander or other artifacts. These records have been chosen primarily from among 

existing ECG databases, including the MIT-BIH Arrhythmia Database, the European 

Society of Cardiology ST-T Database, and several other ECG databases collected at 

Boston's Beth Israel Deaconess Medical Center along with new Holter ECG 

recordings. The table below shows the distribution of the 105 records as they are 

taken from other databases. 

 
Table  3-1 Number of Subjects in QT Database as taken from other databases 

MIT-BIH 

Arrhythmia 

database 

MIT-BIH 

ST 

Database 

MIT-BIH 

Supraventricular 

Arrhythmia 

Database 

MIT-BIH 

Long Term 

Database 

ESC  

ST-T 

Database 

MIT-BIH 

NSR 

Database 

Sudden 

Cardiac 

Death 

Database

15 6 13 4 33 10 24 
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Within each record, between 30 and 100 representative beats have been manually 

annotated by cardiologists, who identified the beginning, peak and end of the P-wave, 

the beginning and end of the QRS-complex (the QRS fiducial mark, typically at the 

R-wave peak, was given by an automated QRS detector), the peak and end of the T-

wave, and (if present) the peak and end of the U-wave. In order to permit the study of 

beat-to-beat variations such as alternans, 30 consecutive beats of the dominant 

morphology have been annotated in each case if possible. In records with significant 

QRS morphology variation, up to 20 beats of each non-dominant morphology have 

also been annotated. Annotations exist only for those beats which along with their 

neighboring beats have been classified as Normal by the Aristotle Arrhythmia 

Detector [REF]. In all, 3622 beats have been annotated by cardiologists. These 

annotations have been carefully audited to eliminate gross errors, although the precise 

placement of each annotation was left to the judgment of the expert annotators. The 

current edition of the QT Database includes two independently derived sets of 

annotations for 11 records (to permit study of inter-observer variability). The 

remaining 94 records contain only a single set of expert annotations. All records have 

a sampling rate of 250Hz.  

We have used this database for performance evaluation of different ECG 

segmentation algorithms described in chapter 5 and 6. 

3.2 The European Society of Cardiology (ESC) ST-T 

Database 

In order to evaluate the performance of algorithms designed for the detection of ST 

segment and T-wave changes indicative of Coronary Heart Disease (CHD), the ESC 

ST-T Database [5] is used as an international standard. It contains more than 200 ST 

Segment and almost 300 T-wave changes. The ST-T episodes have been defined as 

follows: 

a. Minimum Duration: 30 seconds 

b. ST Segment Changes: ST Segment Deviations of 0.1mV from the reference 

value, measured 80ms after the J-point, have been considered to start or end an 

ST Segment change. In Sinus Tachycardia (Heart Rate > 120bpm) ST 

deviations should be measured 60ms after the J point. 



 36

c. T wave Changes: T-wave amplitude deviations of 0.2mV from the reference 

values have been considered to start or end a T-wave change, whereas a 

0.2mV threshold is applied for T-wave amplitude changes. 

d. Successive episodes have been considered as separate only if there is a 

baseline interval of at least 30s.  

Each of the 100 ECG records in this database contains 2-channel, 2-hour recordings 

taken at a sampling rate of 250Hz. Each record is accompanied by a clinical report 

including information concerning pathology, drug treatment, electrolyte imbalance 

and additional technical information. For each case, the two leads which were 

considered most likely to reveal ST-T changes have been recorded. Two cardiologists 

have independently annotated QRS Complexes, episodes of changes in ST segment or 

T wave morphology, rhythm changes, and signal quality. Episodes of ST segment and 

T wave changes have been identified in both leads and their onsets, extrema and 

offsets have been annotated. Differences in the annotations by the two cardiologists 

were resolved by a cardiologist in the database coordinating group.  The database 

contains the following type of annotations: 

a. Beat Annotations 

 Normal 

 Supraventricular Beat 

 Premature Ventricular Contractions (PVC) 

b. Non Beat Annotations 

 ST segment elevations and Depressions (Start, End and Peak 

Amplitudes) 

 T-wave elevations and Depressions (Start, End and Peak Amplitudes) 

 Rhythm Changes 

i. Atrial Fibrillation 

ii. Atrial Flutter 

iii. Ventricular Bigeminy 

iv. Ventricular Tachycardia 

 Signal Quality Change Annotations 

i. Moderate Level Noise 

ii. High Level Noise 

The table below shows summary of different main events in the database. 
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Table  3-2 Number of different events in the ESC ST-T Database 

Total Number of Beats 431524 

Supraventricular Beats 640 

PVC 1329 

Ventricular Couplets 41 

Ventricular Runs 25 

ST elevation Episodes 81 

ST Depression Episodes 143 

T Wave Elevation Episodes 161 

T Wave Depression Episodes 128 

 

Annotations by the pair of independent cardiologists have also been analyzed to 

evaluate reproducibility of the human expert opinions. The reference annotations were 

used to determine the Sensitivity (Se) and Positive Predictive Value (PPV) of each 

annotating cardiologist. The table below shows the Se/PPV for the best and the worst 

annotator in the database and points to the fact that ST deviation detection accuracy is 

higher than T-wave detection accuracy. 
Table  3-3 Sensitivity and Positive Predictivity of ESC ST-T Database Annotators 

Episode Type 

(Number) 

Best Annotator 

(Se/PPV) 

Worst Annotator 

(Se/PPV) 

ST Elevation 83/90 70/85 

ST Depression 80/93 71/85 

T Wave Elevation 66/98 60/92 

T Wave Depression 63/99 53/85 

We have utilized the freely available part (comprising 48 records) of the ESC ST-T 

Database for the evaluation of ST segment change detection algorithms given in 

chapter-8. 

3.3 The MIT-BIH Arrhythmia Database  

The MIT-BIH Arrhythmia database [6] is used for evaluating the performance of 

arrhythmia detectors or beat classification systems. It comprises 48 records chosen at 

random from a set of over 4000 long term Holter recordings obtained by the Beth 

Israel Hospital Arrhythmia Laboratory between 1975 and 1979. Each of these 

recordings is slightly over 30 minutes long. The subjects were 25 mean aged 32 to 89 
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years and 22 women aged 23 to 89 years. The ECG are recorded using nine Del Mar 

Avionics model 445 two channel recorders digitized at 360Hz with a 11-bit ADC over 

a -5mV to +5mV range. The database contains approximately 109,000 annotated 

beats of different types as indicated below. 

 
Table  3-4 Different Annotations in the MIT-BIH database 

Beat Type 
Number of 

Beats 

Normal 73447 

Left Bundle Branch Block (BBB) 8075 

Right BBB 7258 

BBB 1 

Atrial Premature Beat (APB) 2514 

Aberrated APB 53 

Nodal Premature Beat (NPB) 82 

Escape Beat 2 

PVC 6930 

Fusion of Ventricular & Normal Beat 801 

Atrial Escape Beat 16 

Nodal Escape Beat 219 

Ventricular Escape Beat 106 

Paced Beat 7028 

Fusion of Paced & Normal Beat 3 

Unclassifiable Beat 33 

Non Beat Annotations 3076 

Total ~109644 

 

We have used this database for the evaluation of our beat classification techniques 

detailed in chapter-7. 

3.4 Other Databases 

Another database of interest is the Long Term ST-T database [7] which contain 15 

lead data of 24 hour recordings and is used for the detection of ST and T wave 

deviations corresponding to ischemic and axes changes. This database has not been 

used in this work. A complete list of databases is available online [3]. 
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CHAPTER 4  
ARTIFACT REMOVAL FROM THE ECG 

In this chapter we present an in depth description of the techniques implemented 

for removal of artifacts from the ECG.  Different artifacts in the ECG distort the ECG 

signal, thus lowering the accuracy of the diagnosis process or leading to the increased 

need of applying robust machine learning algorithms for diagnosis, raising over-all 

system complexity. The ECG signal, in itself, has very interesting characteristics like 

its quasi-periodic nature that can aid in removal of these artifacts. The rest of the 

chapter is organized as follows: In section-1, a description of different types of ECG 

artifacts is given. Section-2 describes and compares different techniques that have 

been implemented for removal of baseline from the ECG Signal. Section-3 renders 

procedures for noise removal with section-4 giving an account of the techniques used 

for removal of Ectopic beats from the ECG. 

4.1 Artifacts in the ECG 

The ECG Signal can be corrupted by the following major types of external 

artifacts [8]: 

• Power line interference: Power line interference presents itself as 50 ±0.2 Hz 

noise (or 60 Hz in many data sets) with an amplitude of up to 50% of the 

peak-to-peak ECG amplitude 

• Electrode contact noise: This noise is caused by the loss of contact between 

the electrode and the skin and exhibits itself as sharp changes with saturation 

at peak amplitude levels for periods of around 1 second on the ECG  

• Patient–electrode motion artifacts: The movement of the electrode relative to 

the patient changes the contact surface for the electrode causing changes in 

impedance between the electrode and the skin resulting in rapid (but 

continuous) baseline jumps or complete saturation (up to 0.5s long) gives rise 

to these artifacts 

• Perspiration Induced Artifacts 



 40

• Perspiration also causes the impedance between the electrode and the skin 

change therefore it also produces artifacts similar to those caused by the 

motion of electrodes. 

• Electromyographic (EMG) noise: EMG is caused by muscular contractions 

and produces artifacts in the ECG that are about 50ms long and lie in the 

frequency range of 0-10KHz with an average amplitude of 10% of the peak 

ECG amplitude 

• Baseline drift: Usually from respiration with an amplitude of around 15% of 

the peak ECG amplitude at frequencies drifting between 0.15 and 0.3 Hz; 

• Instrumentation noise: Artifacts generated by the signal processing hardware, 

such as signal saturation etc. 

• Electrosurgical noise: It is the noise generated by other medical equipment 

present in the patient care environment at frequencies between 100 kHz and 1 

MHz, lasting approximately 1 and 10 seconds 

• Quantization noise and aliasing caused by digitization procedures.  

• Signal processing artifacts (e.g., Gibbs oscillations) resulting from filtering 

with a high order filter.  

The presence of these artifacts makes the task of diagnosis intricate. The figure below 

shows an example of a noisy ECG signal contaminated by a mix of Power line 

interference, baseline wandering and EMG variations.  
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fig.  4-1 ECG Signal contaminated by a mixture of different noise sources 
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Here, reliable detection of different features for diagnosis, for instance, the J-point 

and the ST Segment etc, is very difficult due to the presence of noise. Therefore we 

need to remove these artifacts prior to the application of any diagnosis rules.  

4.2 Baseline Removal 

As described earlier, baseline wandering can result from the motion of electrodes, 

perspiration or respiration. It causes problems in analyzing ECG signals, especially 

the low frequency ST Segment. Therefore the removal of baseline wandering from the 

ECG is a critical step in ECG Signal Processing. The baseline removal scheme, while 

removing the baseline, should induce minimum distortion in the ECG. The isoelectric 

level in the signal that lies in the region after the end of the P-wave and before the 

start of the QRS complex is taken as the reference baseline.  

4.2.1 Literature Survey 

A large number of techniques exist in the literature for the removal of baseline 

wandering from the ECG. In a broad classification these techniques can be classified 

as: 

a. Filtering Based Techniques 

b. Polynomial Based Techniques 

In filtering based approaches, a high pass filter is designed that removes slowly 

varying baseline from the signal. The cutoff frequency for the high pass filter is 

selected so as to minimize the distortion in the ECG Signal; therefore the lowest 

frequency component in the ECG is selected. The minimum heart rate is 40bpm 

(0.67Hz), therefore a cutoff frequency of around 0.5Hz is chosen. Linear phase 

characteristics are desirable in order to preserve the temporal characteristics in the 

ECG signal. Linear phase filtering can be achieved by the use of an FIR filter but it 

generally requires a very large filter order (700 to 2000) which causes a high 

computational load. In order to remove the filter delay, zero phase filtering can be 

implemented by forward-backward filtering. Another drawback of this method also 

stems from the high order of the filter, i.e., we are not able to remove the baseline 

over small datasets. The complexity, resulting from the high FIR filter order, can be 

avoided by using IIR forward-backward filtering, e.g. Chebyshev filters. More 
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sophisticated forms of filtering, for instance adaptive filtering has also been tried. 

Such techniques are described in [9, 10]. Another approach for the removal of the 

baseline is to first decimate the ECG signal, pass it through a low pass filter and then 

up-sample the sample to get an estimate of the baseline. This estimate is then 

subtracted from the ECG signal to get the baseline removed form. A more effective 

approach is to vary the cutoff frequency of the filter based on the heart rate, i.e. using 

a higher cutoff frequency when the heart rate is high and use a lower cutoff frequency 

otherwise. This helps in removing of higher frequency baseline wandering. A method 

for optimally selecting the cutoff frequency using the Short Time Fourier Transform 

(STFT) is given in [11]. Some approaches [12-14] utilize the wavelet transform for 

removal of baseline drift.  

Linear filtering based methods can cause distortion in the ECG Signal especially 

when not using zero-phase forward-backward filtering as is required in real-time 

applications. This distortion is significant at the start and end of the QRS complex. 

Moreover the cutoff frequency (around 0.5Hz) effectively employed in the filtering 

techniques violates the American Health Association (AHA) recommendations [15] 

and the findings that the lowest frequency component of the ECG signal is around 

0.05Hz [16]. Therefore any form of linear filtering beyond this frequency would cause 

some degree of distortion in the ECG. Filtering based approaches distort an ECG 

signal that has no baseline. 

Polynomial fitting based approaches aim at fitting a curve on the ECG signal or 

some points from it. Polynomial based approaches, not being filters, do not cause 

distortion in the ECG signal as is caused by linear filtering. A popular approach is to 

use cubic spline fitting [17] by taking some representative knot points from the signal. 

Knots are selected from the isoelectric (PQ Segment) region. A cubic spline 

polynomial is fitted so that it passes through these knots in a smooth fashion. Such an 

approach can adapt automatically to the heart rate as more knots become available 

with increase in heart rate. However such an approach requires a proper definition of 

the knot points which must lie in the isoelectric region. This requirement, combined 

with over-fitting can distort the ECG signal and change the relative levels of different 

parts of the same beat. A low distortion technique based on the use of median and 

subsequent polynomial fitting is given in [18]. A simple approach that does not distort 

the relative levels of the ST and the PQ segment in a single cardiac cycle is given in 

[19] which uses a first order polynomial fitting to achieve this objective.  
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4.2.2 Implemented Techniques 

The techniques implemented for Baseline removal are explained in this section 

and a comprehensive review of the characteristics of these algorithms is also 

described.  

4.2.2.1 Baseline Removal Using High Pass Filters 

As has been described earlier, Baseline is a slow varying component in the ECG 

signal and can be filtered out by the use of FIR high pass filters with cutoff frequency 

around 0.5Hz designed using window design method with hamming window. Filter 

order can be taken to be 700 to 2000 (even numbers).  
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fig.  4-2 FIR Filter Frequency Response 

Forward-backward filtering is used (for non-real-time applications) to produce a 

zero phase filtering effect to remove the tap delay inherent in the use of FIR filters. 

The squared response of these filters is shown below along with the results for 

baseline removal from an ECG signal artificially contaminated with a simulated 

sinusoidal baseline. The detailed figure shows negligible distortion in the ST segment 

whereas the baseline has been effectively compensated. These figures illustrate the 

effectiveness of the use of FIR high pass filters in the removal of baseline from the 

ECG due to their linear phase characteristics. .  
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fig.  4-3 Removal of Artificial Baseline using FIR Filter (Order = 2000) 
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fig.  4-4 Baseline Removal using FIR Filter 
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fig.  4-5 Frequency Spectrum for Baseline 
Removal using FIR Filtering 
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fig.  4-6 FIR Filtering Based Baseline Removal on Real ECG 
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Due to their high order, FIR filters present a computational load that can be eased 

through the use of forward-backward IIR filtering to make the filter response zero 

phase. The figures below illustrate the use of Butterworth and Chebyshev Type-II 

filters for baseline removal. It can be clearly noted that the application of these filters 

causes severe distortion in the ECG signal because of the nonlinear phase 

characteristics if only forward filtering is employed. The use of forward-backward 

filtering reduces the distortion but then it cannot be implemented in real-time. 

Another issue associated with the use of IIR filters is that their application becomes 

increasingly difficult at higher sampling rates as poles move closer to the unit circle, 

resulting in unstability.  An improvement that can be made is to use heart rate 

dependent IIR filtering as described in the previous section. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

Frequency (Hz)

S
q

u
ar

ed
 M

ag
n

it
u

d
e 

(d
B

)

IIR Filters for Baseline Removal

 

 

Butterworth Filter (Fp=0.6 Fs =0.4 Rp=3 Rs=20 Fs=250Hz Order=6)

Chebyshev Type-II Filter (Fp=0.6 Fs =0.4 Rp=3 Rs=40 Fs=250Hz Order=6)

 
fig.  4-7 IIR Filter Frequency Response 
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fig.  4-8 Effects of nonlinear phase in forward filtering 
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fig.  4-9 Baseline Removal using IIR Filters 
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fig.  4-10 Baseline Removal using IIR Filters 
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fig.  4-11 Baseline Removal on Actual ECG using IIR Filters 
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Function Reference 

FIR Filtering 

The filters used FIR filtering technique described earlier can be obtained by the 

use of getFIRHPF.m. 

 
% File Name: getFIRHPF.m 
% Author Name: Fayyaz ul Amir Afsar Minhas 
% Date: 28May2007 
% Description: Returns the Numerator Coefficients of the FIR High 
Pass 
% filter for use with baseline removal algorithm 
% Usage:  
%     BH=getFIRHPF(Fc_HPF,Forder,FS) 
%     %Fc_HPF: Cutoff Frequency (0.5Hz) 
%     %Forder: Filter Order (700) 
%     %FS: Sampling Frequeny (250Hz) 
%     BH: Numerator Coefficient in B(z)/A(z) 
%Once the filter has been obtained using this function, either use 
%filtfilt for zero phase (without delay) filtering or filter in 
%realtime applications 
IIR Filtering 

The Chebyshev and Butterworth filters described above are stored in the mat files 

chby_HPF.mat and butw_HPF.mat that were developed using SPTOOL in Matlab.   

4.2.2.2 Using Polynomial Fitting  

Polynomial (splines) based approaches have the benefit of automatically to heart-

rate because the number of knots is automatically increased when the heart rate is 

high so the polynomial can detect the baseline more effectively. We have 

implemented three approaches for baseline removal using polynomial based methods 

or its derivatives, which are described henceforth.  

4.2.2.3 Using Cubic Splines  

In the use of this procedure, the QRS onsets and offsets are extracted first using 

the algorithms described in the next chapter. Afterwards we find the average level of 

the region starting 40ms before QRS onset and ending 4ms after the QRS onset. This 

is done in order to nullify any noise related artifacts and account for any errors in 

QRS Delineation. With the knots defined at the QRS onset points with amplitudes 

equal to the average level found earlier, we fit a third order cubic spline polynomial 

on these knots to obtain an estimate of the baseline which is then subtracted from the 

original ECG signal to get the baseline removed signal.  
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fig.  4-12 Spline Fitting for Baseline Removal 

Results 

The results of this technique are shown below. This method behaves poorly when 

only a small number of knots is available.  
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fig.  4-13 Baseline Removal using Spline Fitting 

 
The major problem with the use of this polynomial based approach is that it is 

very sensitive to the detection accuracy of the knot points, which presents an issue in 

case of noisy ECG signals. An error made in the detection of QRS at a single beat 
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affects its neighboring beats as well if spline interpolation is used. An example of 

such an error is shown below.  
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fig.  4-14 Problems with Spline Fitting 

Function Reference 

This technique has been implemented in the Matlab function rmvBaseLine.m.  
% File Name: rmvBaseLine.m 
% Author Name: Fayyaz ul Amir Afsar Minhas 
% Date: 29Jan07 
% Description: Baseline Removal using Spline Interpolation 
% Usage:  
%    [blr S]= rmvBaseLine(qrs_on,s,FS) 
%     %qrs_on: QRS Start (1xno_of_qrs) 
%     %s: Input ECG 
%     %FS: Sampling Frequency [250Hz] 
%     %S: Baseline 
%     %blr: Baseline Removed ECG 
 

4.2.2.4 Using Median Filtering 

Chouhan et al. [18] give a technique for baseline removal using median filtering 

on the electrocardiogram. In this procedure we first compute the median of the signal 

values and subtract this median value from the signal, then a fifth order polynomial is 

fitted to this shifted waveform using least squares method to obtain a baseline 

estimate which is then subtracted from the ECG signal. The base line drift is further 

removed by applying median correction, one-by-one, in each RR interval. This 

method proposes modifications for handling false negatives in the QRS.  
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Results  

The figure below shows the removal of baseline using this method.  

The major advantage with the use of this method is that if no QRS drift is present in 

then the signal is not distorted as was the case with spline polynomials. Moreover it is 

computationally more efficient. However, it cannot adapt itself to very rapidly 

changing baseline variations. Moreover, it may change the difference the levels of the 

ST Segment and the PR interval. 

Function Reference 

This method has been implemented in the function rmvBaseLineMed.m. 
% File Name: rmvBaseLineMed.m 
% Author Name: Fayyaz ul Amir Afsar Minhas 
% Date: 23May07 
% Description: Baseline Removal Median Based Approach 
% Usage:  
%    [s]= rmvBaseLineMed(qrs_F,s) 
%     %qrs_F: QRS Fiducial Point 
%     %s: Input ECG 
%     %s: Baseline Removed ECG 
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fig.  4-15 Median Based Baseline Removal 

4.2.2.5 Using Linear Spline Fitting 

In [19] an effective method for the removal of baseline from the ECG signal is 

given which is very well suited for use in diagnosis procedures using ST Segment 

analysis. This method takes the ECG Signal [ ]s n  and subtracts its mean from it to 

give [ ]y n , i.e.,  



 51

 [ ] [ ]y n s n s= −  (4.1) 

This procedure translates the signal around zero level. Next a first order polynomial is 

fitted on each cardiac cycle in [ ]y n  and this is done in two sub-stages. In the first 

sub-stage we fit a first order polynomial to [ ]y n  itself and the values of this 

polynomial, [ ]p n ,  are subtracted from [ ]y n  to give [ ]z n , 

 [ ] [ ] [ ]z n y n p n= −  (4.2) 

 
In the second sub-stage, the sample values to the QRS complex for each cardiac cycle 

are replaced by the corresponding values of [ ]p n  to yield [ ]*z n . Thereafter, a region 

of each cardiac cycle starting 60ms before the P-wave and ending 60ms after the T-

wave is taken from [ ]*z n  and a first order polynomial is fitted to each of these 

regions which is subtracted from the corresponding region to produce a baseline 

removed cardiac cycle. The two sub-stages are necessary because the existence of the 

QRS complex slightly shifts the polynomial towards its main QRS polarity. If the 

QRS has a large R wave then the polynomial shifts upwards and the opposite happens 

when Q or S wave are large. This method has the advantage that in the absence of any 

baseline distortion in the original signal, this method does not distort the ECG and is 

highly efficient in removal of baseline as well without introducing any distortion in 

the ST Segment of the signal. However this method produces discontinuities at the 

end of a cardiac cycle; however no significant diagnostic information is contained in 

this region. In our implementation of the algorithm, we have used a simplifying 

approximation for the definition of a region of interest (ROI) as shown below. 
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fig.  4-16 Approximation procedure used in the algorithm 
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This ROI is then used in the second sub-stage instead of the originally proposed 

cardiac cycle interval starting 60ms before the P-wave and ending 60ms after the T-

wave. The results of this method are not reliable before the start of the P-wave and 

after the end of the T-wave. However this is not a significant loss, especially when 

dealing with the analysis of the ST-Segment. 

Results 

The results of baseline removal using this approach are given below: 
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fig.  4-17 Baseline Removal 

The figure below shows the distortion introduced by the baseline removal procedure.  
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fig.  4-18 Artifacts in the ECG caused by Baseline Removal 
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Function Reference 

This method has been implemented in the function rmvBaseLinePolyMod.m. 
% Filename: rmvBaseLinePolyMod 
% Author Name: Fayyaz ul Amir Afsar Minhas 
% Date: 28May07 
% Description: Baseline Removal using Two Stage First Order 
Polynomial 
% Fitting 
% Usage:  
%    [blr S]= rmvBaseLinePolyMod(s,qrs_on,qrs_off,FS) 
%     %qrs_on: QRS Start (1xno_of_qrs) 
%     %qrs_off: QRS End (1xno_of_qrs) 
%     %s: Input ECG ECG 
%     %FS: Sampling Frequency [250Hz] 
%     %S: Baseline 
%     %blr: Baseline Removed ECG 

 

4.2.3 Conclusions 

In this section, a wide variety of baseline removal techniques was described along 

with a visual comparison approach for analyzing the efficacy of these methods. 

Filtering based approaches, when implemented in non-real time environments (with 

forward-backward filtering) are highly effective in removing baseline from signals. 

However they may introduce distortion in the signal and are computationally 

inefficient for real time implementation. Use of cubic spline interpolation is good at 

automatically adapting to the heart rate but it introduces artifacts and distortion in the 

signal.  Use of the median filtering based approach can remove only slowly varying 

baseline drift. However it does not distort the signal when no baseline drift is present.  

Using the two sub-stages for fitting a first order polynomial is able to cope up with 

fast baseline variations and introduces no artifacts in the diagnostically significant 

region of the ECG and is good choice for practical implementation, especially for the 

analysis of coronary artery disorders that manifest themselves in ST segment 

variations.  

4.3 Noise Removal 

Low SNR of the ECG signal causes performance degradation during diagnosis 

thereby making noise removal an imperative procedure in the design of a computer 

aided diagnosis expert system. A list of noise and noise related artifacts has been 

given in section 3.1. A large number of methods exist in the literature for removal of 
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noise from the ECG. In the following section we describe a literature survey of the 

different techniques that exist for this purpose. A detailed description of the 

implemented schemes and performance comparison is also given henceforth.  

4.3.1 Literature Survey 

The objective of a noise cancellation method for ECG is to produce a cleaned 

version of the signal without introducing distortion and ringing effects in the signal. 

ECG signal components, most sensitive to noise artifacts include the isoelectric 

regions, the P and the T-waves. The QRS complex is less affected by noise due to its 

relatively high amplitude. Major problems addressed in existing literature for noise 

removal from the ECG include removal of power line and Myo-Electric interferences. 

For the removal of Powerline interference, design of linear notch filters has been 

proposed, which filter out the 50/60Hz interference from the ECG Signal. However 

notch filters [20] cause undesirable distortion and ringing effects to be introduced in 

the ECG. Therefore they are generally not applied in practical applications. Nonlinear 

filtering can also be employed which builds on the idea of subtracting a sinusoid 

generated by a filter from the observed signal. A review of the subtraction procedure 

is given in [21]. Adaptive techniques for Powerline interference reduction [22, 23] are 

very effective in removing such interference. Wavelet Based Approaches [13, 24] also 

find application in removing Powerline interference and muscular noise from ECG.  

As has been explained earlier, spectra of noise and the original ECG signal overlap, 

therefore any linear filtering method that removes noise from the signal also 

attenuates the signal. In order to overcome this difficulty, we have studied the use of 

Independent Component Analysis (ICA) and Nonlinear techniques for the removal of 

noise from the ECG. ICA is a tool for Blind Source Separation which can be adapted 

for ECG Noise Removal because different noise components in the ECG and the 

original ECG signal are statistically independent because the stem from different 

(independent) sources. Although ICA has been used extensively for feature extraction 

and noise reduction from the Electroencephalograph (EEG) and for separation of fetal 

ECG, its application to noise removal from the ECG has not been investigated in 

detail in the literature. Some of the methods described in the literature for noise 

removal from the ECG using ICA include [25-27].  
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Another approach studied for noise removal from ECG is nonlinear projective 

filtering which aims at first forming a reconstructed phase space from the ECG signal 

data. Some of the methods existing in the literature that utilize nonlinear techniques 

for ECG Noise removal include [28, 29].  

Approaches using ICA and Nonlinear Noise reduction are described in greater details 

in the upcoming sections. 

4.3.2 Implemented Approaches for Noise Removal 

We have implemented three schemes for noise removal from the ECG. In this 

section we present a comparison of the performance of these techniques for the 

removal of noise artifacts from the ECG signal.  In order to facilitate this comparison 

and present quantitative results we use artificially generated ECG obtained by the 

implementation of a dynamical model for the ECG [30] available as open source 

software at [31]. A summary of the ECG generation procedure and its characteristics 

are briefly described in this section.  

4.3.2.1 Synthetic ECG Generation 

The proposed method is based on a dynamical model comprising three coupled 

differential equations that is able to generate a desired ECG by specifying the mean 

and the standard deviation of the heart rate, morphology of the PQRST cycle and the 

power spectrum of the RR tachogram. Moreover both respiratory sinus arrhythmia at 

the high frequencies (HF) and Mayer waves at the low frequencies (LF) together with 

the LF/HF ratio are incorporated in the model.  

This model generates a trajectory in a 3D state space with coordinates (x, y, z). Quasi-

periodicity in the ECG is reflected by the movement of the trajectory around an 

attracting limit cycle of unit radius in the (x, y) plane. Each revolution of this circle 

corresponds to one RR-interval or heart beat. Interbeat variation in the ECG signal is 

reproduced using the motion of the trajectory in the z-direction. Distinct points in the 

ECG, such as the P, Q, R, S and T are described by events corresponding to negative 

and positive attractors or repellors in the z-direction placed along the unit circle given 

by Pθ , Qθ , Rθ , Sθ and Tθ  as shown below. When the trajectory approaches one of 

these events, it is pushed upwards or downwards away from the limit cycle, and the as 
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it moves away from the limit cycle, and then as it moves away it is pulled back toward 

the limit cycle.  
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fig.  4-19 Artificial ECG Generation 

The equations of the model are: 
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Baseline wandering was introduced in the ECG using 0z  with 2f being the respiratory 

frequency and A=0.15mV. The effects of Respiratory Sinus Arrhythmia (RSA) and 

Mayer waves which manifest themselves in the HF ( 2 ~ 0.25f Hz ) and LF 

( 1 ~ 0.1f Hz ) regions of the power spectrum of RR-interval tachogram are modeled as 

a bimodal power spectrum consisting of the sum of two Gaussian Distributions 
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The ratio of 2 2
1 2σ σ  models the LF/HF ratio is used as a measure of the 

sympathovagal balance for the autonomic nervous system. The RR Interval time 

series ( )T t  is generated by taking the inverse Fourier Transform of complex numbers 
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with magnitude ( )S f  and phases randomly distributed between 0 and 2π . This 

time series is multiplied by an appropriate scaling constant and adding an offset value 

to have a required mean and standard deviation of the RR interval. This time series is 

used for defining the time dependent angular velocity ( )tω  in the differential 

equation model as: 

( ) 2
( )

t
T t
πω =  

These equations are solved using Runge-Kutta method with a fixed time step 

1 samplingt fΔ = . The parameter values, originally given in the paper are: 

Table  4-1 Dynamic Model Parameters for ECG Generation 

 
fig.  4-20 shows an ECG Generated using this method. 

4.3.2.2 Evaluation Measures for Noise Reduction 

In order to obtain a quantitative estimate of the level of noise reduction for a given 

algorithm we use artificial ECG with added noise. For the purpose of quantifying the 

level of noise in an ECG signal, we use the concept of SNR which is defined as:   

 signal

noise

σ
γ

σ
=  (4.4) 

Where signalσ  and noiseσ  are the standard deviations of the ECG signal and the noise 

respectively. An artificial ECG Signal was generated having a mean heart rate of 

60bpm with a standard deviation of 1bpm and a sampling frequency of 256Hz. The 

position of the LF and HF components of the RR Interval spectrum were 0.1Hz and 

0.25Hz respectively with a standard deviation of 0.01Hz and the LF/HF ratio was 

taken as 0.5.  

Some of the samples from this ECG are shown below.  
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fig.  4-20 Artificial ECG Generated for Noise Removal Evaluation 

Two types of noise were added to the ECG signal, 

• Stochastic Noise, i.e. Gaussian Noise with zero mean 

• Deterministic Noise, i.e. a model of finger tapping artifact generated with a 

4Hz sinusoid at modulated by a hamming window with maximum noise 

magnitude at 0.1V.  

The noise was considered to be additive. Let [ ]x n  be the original ECG signal and 

[ ]nε  be the added noise, then the observed signal (with observational uncertainty) is: 

 [ ] [ ] [ ]y n x n nε= +  (4.5) 

For the purpose of evaluation of a noise reduction algorithm that generates a cleaned 

version of the signal, [ ]z n  we use two measures: 

a. Noise Reduction Factor (NRF) 

It is given by: 

 
[ ] [ ]( )
[ ] [ ]( )

2

2

y n x n

z n x n
χ

−
=

−
 (4.6) 

Where ⋅ denotes the average over time. The higher the value of the NRF the 

greater is the noise reduction. A NRF=1 implies no improvement in signal quality.  

 
b. Correlation Coefficient (CC) 

It is defined as: 
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[ ]( ) [ ]( )x z

x z

x n z nμ μ
ρ

σ σ

− −
=  (4.7) 

Where xμ and zμ are the mean values of [ ]x n and [ ]z n  respectively and xσ and 

zσ are their standard deviations. A CC value of 1 implies that all noise has been 

removed from the ECG Signal.  

4.3.2.3 Use of Linear Filtering Techniques 

The simplest approach for noise removal from the ECG is based upon the use of 

digital filters. We know that the frequency content of the ECG signal does not exceed 

40-45Hz. Therefore high frequency noise can be removed by the use of a simple low 

pass filter with cutoff at 45Hz. For this purpose we have designed a Butterworth IIR 

filter with order = 12. This filter is applied through forward-backward filtering to 

yield a zero phase response. The magnitude response of the filter is shown below: 
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fig.  4-21 Magnitude Response of IIR LPF Filter 

Results 

The figure below shows the results of low pass filtering the artificial ECG along with 

the power spectrum density (PSD) obtained using Welch’s Method [32]. The PSD 

shows that the LPF procedure is unable to retain the spectral characteristics of the 

ECG and to remove noise from the region where noise and signal spectra overlap. 
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fig.  4-22 Noise Removal with LPF 
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fig.  4-23 Change in Frequency Spectrum due to LPF 

Function Reference 

The filter described above was developed using SPTOOL in Matlab and is stored 

as btw_LPF.mat and can be used with filtfilt or filter commands in Matlab.  

4.3.2.4 Independent Component Analysis for Noise Removal 

In this section we investigate the effectiveness of using ICA for noise removal and 

the problems encountered in its application. For removal of noise artifacts from a 

single ECG channel we adapt the approach given in [33] which uses ICA in 

conjunction with Takens’ theorem of Time Delay Embedding. Takens’ theorem states 



 61

that it should be possible to reconstruct the dynamics of a deterministic system with 

the assumption is that the measured signal is due to nonlinear interactions of just a 

few degrees of freedom, with additive noise. This suggests the existence of an 

unobservable deterministic generator of the observed data. Takens’ theorem allows 

the reconstruction of the unknown dynamical system that generated the measured 

time series by reconstructing a new state space based on successive observations of 

the time series. One of the methods for reconstructing a Dynamical Embedding (DE) 

matrix from the observed data ( )x t  with unknown state ( )X t  at a time t is given by: 

 ( ) ( ) ( )( ){ }( ) , 2 ,..., 1X t x t x t x t mτ τ τ= − − − − ∈ℜ  (4.8) 

Where τ is the lag and m is the number of lags or the embedding dimension. This 

delay vector representation describes the observed signal values assuming that the 

data ( )x t , 1...t N=  has been generated by a finite dimensional, nonlinear system of 

the form: 

 [ ]( ) ( 1), ( 2),..., ( ) tx t f X t X t X t D e= − − − +  (4.9) 

Where D is the degrees of freedom of the original system and te is independently and 

identically distributed (i.i.d), zero mean with unit variance.  

Under quite general circumstances the attractor formed by the embedding is 

equivalent to the attractor in the unknown space in which the original system is living 

if the dimension of the delay coordinates space (m) is sufficiently large. To be precise, 

this is guaranteed if m is larger than twice the box counting dimension [34] of the 

attractor, i.e. roughly speaking larger than twice the number of active degrees of 

freedom. Several methods exist for finding the optimal time delay and the embedding 

dimension for given data (see [35, 36]). Once the values of optimal time delay and the 

embedding dimension have been chosen, the embedding matrix is formed from the 

ECG data as:  

 2 ( 1)

( 1) ( 1)

t t t N

t t t N

t m t m t m N

x x x
x x x

X

x x x

τ τ

τ τ τ

τ τ τ

+ +

+ + + +

+ − + + + −

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

L

L

M M O M

L

 (4.10) 

If the values of the time lag and the embedding dimension are chosen properly then 

we the estimated X contains sufficient information about the temporal structure of the 

measured data.  
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Now we attempt to span the embedding matrix with an appropriate basis with the aim 

of identifying the underlying sources in the embedding matrix. For this purpose we 

use ICA, which has the advantage of being able to identify non-orthogonal basis 

whereas PCA (using SVD) is limited to identifying orthogonal basis only. These non-

orthogonal bases enables us carry out a blind separation of the statistically 

independent sources assuming linear mixing of the sources at the sensor.  

Lets consider X to be a matrix of m observed random vectors, A a m m×  square 

mixing matrix and S, the m source vectors such that 

 X AS=  (4.11) 

ICA algorithms attempt to find a separating matrix W such that 

 S WX=  (4.12) 

In practice, iterative methods are used to maximize or minimize a given cost function 

such as mutual information, entropy or kurtosis which leads to identifying the 

statistically independent components. In this study we considered two methods for 

performing ICA: Fast ICA [37] which optimizes kurtosis for finding the independent 

components and jadeR [38] which performs Multidimensional ICA and is based on 

the joint diagonalization of cumulant matrices thereby combining benefits of both 

PCA and ICA to provide a stable deterministic solution whereas ICA suffers from a 

scaling and column ordering problem due to indeterminacy of the solution to scalar 

multipliers and column permutations of the mixing matrix.  

The next task after ICA is to select the appropriate independent components and 

project them back to the measurement space. For this purpose we use correlation of 

the observed ECG signal with the independent components and find the component 

that have the highest correlation with the original signal. In practice, selection of the 

relevant independent components should be done using a more generic approach.  

Once the relevant independent component has been chosen, these components must 

be projected back to the measurement space such that 

 i T
i iY a s=  (4.13) 

Where is  is the selected independent component, ia the corresponding column of the 

mixing matrix A and iY is the resulting embedding matrix. The projected time series is 

determined as: 

 ( ) ,( 1)
1

1 m
i

i k t k
k

y t Y
m + −

=

= ∑  (4.14) 
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for t=1,2,…,N, where ,( 1)
i

k t kY + −  refers to the element of iY indexed by row k and 

column (t+k-1). Here the assumption is that there is a single signal source and a single 

noise source which is very limited in application and must be generalized for better 

performance. Another issue is scaling and inversion indeterminacy problem. We can 

divide the actual output by the largest element of the original ECG signal. However 

this method is also not generic and these problems must be solved by the use of a 

more practical approach. The cleaned ECG produced by this method is delayed with 

respect to the source and noisy signal and must be corrected.  

Results 

The figure below shows the results of this algorithm for artificial ECG signals and it 

clearly demonstrates the problems associated with using ICA, i.e, delayed and scaled 

output.  
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fig.  4-24 Noise Removal with ICA 

Remarks 

ICA presents a good method for removal of noise from ECG but the method needs to 

be investigated in more detail before it can be practically applied. The following 

issues need to be analyzed systematically: 

a. Defining a procedure for detecting independent components related to ECG 

and noise 

b. Defining multiple source signals and noise signals and combining the multiple 

source signals for better noise removal 

c. Removal of delay and scaling issues for noise removed signals 
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d. Optimal selection of delay and embedding dimensions in Phase Space 

Reconstruction  

Function Reference 

This approach has been implemented in the file ICANR_JADE.m. 
 
% Filename: ICANR_JADE.m 
% Author Name: Fayyaz ul Amir Afsar Minhas 
% Date: 06June07 
% Description: Noise Reduction from ECG using ICA 
% Usage:  
%    [yy s]=ICANR_JADE(y,m) 
%     %y: noisy signal 
%     %m: Embedding Dimensions 
%     %s: Scaled noisy signal 
%     %yy: Noise Removed Signal 
%     NOTED: This function requires getEmMat.m and jadeR.m 

4.3.2.5 Nonlinear Noise Reduction by Projective Filtering 

For nonlinear noise reduction in the ECG we have implemented the technique 

conferred in [28] which exploits the short term predictability in ECG with nonlinear 

projection method developed for chaotic signals. The variation in the RR interval of 

the ECG signal makes long term prediction impossible, although the dynamic 

evolution during one cycle is more or less confined to a typical shape resulting from 

the quasi periodic nature of the ECG signal. Due to random fluctuations of the cycle 

lengths the embedding theorems do not strictly hold, however this representation is 

very useful to exploit the structure hidden in the signal and the assumption of the 

embedding theorems may be well enough satisfied to allow practical use to be made 

of the embedding technique.  

Consider a deterministic dynamical system written in m dimensional delay 

coordinates (as described in the previous section), ( )1,...,n n m nx f x x− −= . We perform a 

measurement which is subject to random fluctuations n n ny x ε= + . Rewriting the 

dynamics in implicit form as ( ),..., 0n m nf x x− =  shows that in an m+1 dimensional 

delay coordinate space the noise free dynamics is constrained to a m-dimensional 

hypersurface. The noise nε in the measurements causes an extension of a cloud of data 

points perpendicular to this hypersurface. Therefore one can identify the direction to 

correct the observed signal by projecting these points onto the hypersurface formed by 

the cleaned signal which is possible only if the variance of the noise is smaller than 

that of the signal. For this purpose in a m+1-dimesional embedding space we compute 
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the covariance matrix 
( 1) ( 1)m mijC

+ × +
 of a set of points j ny U∈ lying in the neighborhood of 

the n-th embedding vector as follows: 

 1 0,..., 0,...,
n

ij k m i k m j i j
k Un

C y y i m j m
U

μ μ− + − +
∈

= − = =∑  (4.15) 

Where nU  is the number of points in the neighborhood (with a minimum of 

min 50k ≥  points) and iμ is the mean given by: 

 1 0,...,
n

i k m i
k Un

y i m
U

μ − +
∈

= =∑  (4.16) 

Then a transformed version of the covariance matrix is formed as: 

 ij ii ij jjR C RΓ =  (4.17) 

Where 0 ( )ijR i j= ≠ , 1 ( 2,..., 1)iiR i m= = −  and 00 mmR R M= =  where M is a large 

number. The Q  orthonormal Eigen vectors of Γ  with the smallest Eigen values are 

found and are given by , 1,...,qe q Q= . The projector onto the subspace spanned by 

these vectors is: 

 , ,
1

Q

ij q i q j
q

Q ε ε
=

=∑  (4.18) 

Finally the i-th component of the correction, 

 ( ).
1

1 Q

n i ij jj j n m j
qii

Q R y
R

θ μ − +
=

= −∑  (4.19) 

This gives the correction b⊥ which can be added to each embedded vector to bring the 

point toward the manifold spanned by the m+1-Q largest Eigen vectors. We can 

summarize the procedure as: 

 ( )1

1

ˆ −

=

⎡ ⎤= + ⋅ ⋅⎣ ⎦∑n n ny R R - y
Q

n q q
q

y ε ε μ  (4.20) 

For details over the derivation of this method the reader can consult Kantz and 

Schreiber (2004) [35]. The penalty matrix R makes the largest two Eigen values lie in 

the subspace spanned by the first and last coordinates of the embedding space and 

prevents the correction vector from having any components in these directions. This 

correction is done for each embedding vector separately yielding a set of corrected 

vectors. Since each element of the scalar time series occurs as a component m+1 

different embedding vectors, we finally have as many different suggested corrections 

of which we take the average. Due to this averaging the resulting corrected vectors do 
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not precisely lie on the local subspaces but are only moved towards it. This procedure 

can be repeated multiple times to get better results.  

Results and Remarks 

The figures below show the results of this method. The values selected were 

m=15, Q=13, min 10k = , Neighborhood Size 0.4neighborhoodr = =  and 5iterationN = . With 

Gaussian noise this method was able to remove noise even when SNR<1 was taken.  
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fig.  4-25 Nonlinear Noise Reduction (NLNR) 
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fig.  4-26 Phase Space Demonstration of Noise Removal Procedure 

This clearly shows that this method is able to effectively remove noise that is 

orthogonal to the ECG signal and is able to retain the power spectrum of the true 

signal. However it does not behave well on non orthogonal noise (such as the 4Hz 
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sinusoid amplitude modulated by hamming window) as shown below. This is due to 

the fact that only orthogonal components were sought in the projection procedure and 

this problem can be remedied by using local ICA. Further enhancement can also be 

brought in by using a dynamic neighborhood size selection procedure [39] which 

would reduce the distortion caused in the QRS segment. Another issue associated 

with this method is its time complexity as this method requires about 10s for filtering 

a 5000 sample record sampled at 250Hz on a 1.8GHz PC with 512MB RAM with 

Matlab 7.1 and Windows XP Professional. This can be handled through the 

application of a noise detection procedure based on Principal Component Analysis 

[40]. 
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fig.  4-27 Frequency Characteristics after NLNR 
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fig.  4-28 NLNR is unable to remove the non-orthogonal 4Hz finger tapping artifact 
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The figure below shows the results of nonlinear filtering with real ECG data and 

compares it with filtering using the LPF described in a previous section.  
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fig.  4-29 Comparison of NLNR and IIR LPF on real ECG 
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fig.  4-30 Frequency Spectrum Comparison of NLNR and IIR LPF 

Function Reference 

This approach has been implemented in the file NLNR.m. 
% Filename: NLNR.m 
% Author Name: Fayyaz ul Amir Afsar Minhas 
% Date: 06June07 
% Description: Noise Reduction from ECG using Nonlinear Projection 
% Usage:  
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%    z=NLNR(y,m,p,r,kn,i) 
%     %y: noisy signal 
%     %m: Embedding Dimensions 
%     %p: Selected Dimensions 
%     %r: Neighborhood radius 
%     %kn: Minimum number of neighbors 
%     %i: number of iterations 
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CHAPTER 5 
DETECTION AND DELINEATION OF THE 

QRS COMPLEX 

In the ECG signal, the QRS complex is of fundamental importance. It indicates the 

ventricular depolarization and is characterized by the most dominant component of the 

beat, in terms of amplitude. Its detection is of vital importance in response to the sub 

sequent processing of the ECG signal such as calculation of the RR interval.  In terms 

of disease classification, the QRS complex is of pathological importance. The detection 

of the QRS complex serves as an entry point for almost all automated ECG analysis 

algorithms.  

 
fig.  5-1 The QRS Complex 

5.1 Objectives of QRS Detection and Delineation 

The objectives of the QRS detection and Delineation process are described 

henceforth: 

• Locate the start of the QRS Complex (Onset) 

• Locate the end of the QRS Complex (Offset) 

• Locate a reference point in the QRS (Not necessarily the R-Wave) 

• Determine the Morphology of the QRS Complex (QR, QS, QRS, RS, RSR’, 

R, or unknown) 

• Locate the peaks of individual Q, R and S components 

5.2 Problems in QRS Detection 



 71

The task of QRS detection is made intricate by the presence of noise in the ECG 

signal and the large variety of morphologies in which the QRS Complex can occur. 

Moreover the duration of the QRS complex can vary because of the presence of cardiac 

diseases related to the ventricles, which calls for the use of some adaptive techniques. A 

QRS detection and delineation process should be able to cope with all these problems. 

5.3 Literature Survey 

The figure below shows the architecture of a generic QRS Detector. It is divided 

into a preprocessing or feature extraction stage including linear and nonlinear filtering 

and a decision stage including peak detection and decision logic. Often an extra 

processing block is used for the exact determination of the temporal location of the 

assumed QRS candidate.  

 
fig.  5-2 Architecture of a QRS Detection Algorithm 

The peak detection logic is primarily based on heuristically comparing the output of the 

preprocessing stage against a threshold which can be adaptive.  Therefore the QRS 

detection algorithms are mostly classified on the basis of their preprocessing stages. 

Kohler et al. [41] provide an excellent review of QRS detection and delineation 

strategies and divide the different algorithms used for this purpose into the following 

major categories: 

• Derivative Based Algorithms 

These algorithms first apply derivative operators of different types on the 

given ECG signal and then compare the absolute value of the differentiated 

signal against certain thresholds. Some form of post processing is also required 

for accurately obtaining the QRS Complexes. However these methods are very 

sensitive to noise and moreover it is difficult to optimize the thresholds. An 

earlier implementation by [42] of such an algorithm indicates their deficiencies 

in the detection of the QRS. 

• Algorithms based on Digital Filters 
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These algorithms use digital filters such as,  

 1( ) (1 )(1 ) , 0K LH z z z K L− −= − + >  (1.1) 

• Algorithms based on the Wavelet Transform 

Because of the non-stationary nature of the ECG Signals, multi-resolution 

methods such as wavelets provide a very effective means of analyzing the ECG 

signal. These algorithms utilize the CWT and the DWT for the detection of the 

QRS complex. 

• Filter Bank Based Algorithms 

• Neural Network Based Approaches 

• Use of Adaptive Filters for QRS Detection 

• HMM Based Approaches 

• Approaches Based on Mathematical Morphology 

These approaches use morphological operations such as opening and closing 

for the reliable extraction of the QRS Complex. 

• Use of Matched Filters for QRS Detection 

• GA Based Approaches 

• Hilbert Transform Based Algorithms 

• Length and Energy Transform Based Approaches 

• Syntactic Approaches 

• QRS Detection Based on Maximum A Posteriori (MAP) Estimation 

• Zero Crossing Based Approaches 

5.4 Implemented Schemes for QRS Detection/Delineation 

The following methodologies for QRS detection have been implemented: 

a. The Use of Length Transform for QRS Detection 

b. Pan Tompkins’s Algorithm for QRS Detection 

c. Using CWT for QRS Detection 

d. Use of DWT for QRS Detection 

Each of these schemes is described in detail in this section. 

5.4.1 Length Transform Based QRS Detection 
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QRS detection methods using length transforms have proven to be high 

performance detectors. They exploit the curve length concept. The following figure 

shows how the lengths L1 and L2 are able to characterize the shape of the curves, given 

a certain time interval dt.  

 
fig.  5-3 The Length Transform 

This principle can be applied to detect the wave fronts that characterize the beginning 

and the end of an episode. Applying Pythagoras theorem in the discrete time domain we 

can approximate the arc- length relative to the i-th sample with the chord length, 

obtaining: 

 
1

2 2
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0 1
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n n

i x i i
i i

L l T y y
−

−
= =

= = + −∑ ∑  (5.2) 

L is the total estimated length of the episode, xT is the sampling interval, 

1i iy y −− represents the i-th increment and n is a rough estimate of the duration of the 

episode (or waveform) to be detected: in our case n is an estimate of QRS duration. 

L can also be written as  
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−
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Now, xT being a constant and approximating the hypotenuse of successive triangles 

with their height we obtain: 

 1
1

n

i
U L Dy

=

= ≈∑  (5.4) 

It has been found by repeated experiments that taking the square of this quantity brings 

a better discriminator capacity. So we can define a new operator, called U2, as: 

 2
2

1

n

i
U Dy

=

= ∑  (5.5) 
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Finally, centering the computational window on the i-th sample, and calling w=n/2 we 

obtain a recursive low computational cost form which can be easily programmed.  

 2 2
3 3 1 2 2( ) ( )i i i w i w i w i wU U y y y y− − − − + − += − − + −  (5.6) 

Simple thresholding applied to the output of this operator leads to an efficient and 

reasonably accurate detection of QRS complexes in real time ECG signals. 

5.4.1.1 Steps Involved 

The different steps involved in QRS detection and onset/offset calculation using 

length transform have been slightly modified and are shown in the figure below. These 

include: 

 
fig.  5-4 Steps involved in Length Transform Based QRS Detection 

Band Pass Filtering 

The frequency content of the QRS Complex lies in the range 10-25Hz [41]. A Band 

pass filter tuned to these frequencies would attenuate the P and T waves in comparison 

to the QRS complex, thus making QRS detection easier. Moreover it diminishes the 

effects of base line wandering which is taken to be low frequency noise and also 

removes any high frequency interferences from the ECG. Therefore the Prefiltered ECG 

signal is band pass filtered using a FIR 10-25Hz BPF of order 100 as shown below. 

 
fig.  5-5 Effects of Band Pass Filtering 

The signal is padded prior to BPF and the padding is removed afterwards in order to 

reduce the effects of border distortion.  
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Differentiation 

Differentiation is carried out by the use of differencing as the sampling rate is 

considered to be constant. This step can be performed using the diff Matlab operator. 

But the use of an operator like [ ]1h= -2 -1 1 2
8

gives better results because of a higher 

tolerance to noise. 

 
fig.  5-6 Effects of Differentiation 

Squaring 

The differenced signal is then squared in order to make the result positive and 

suppress small values.  

 
fig.  5-7 Effects of Squaring 

Thresholding 

The smoothed signal is then thresholded to detect the possible regions in which the 

QRS may occur. For this purpose an adaptive thresholding function is used which is 

proportional to the average value of the smoothed signal over a fixed window of 

duration 4s. For each of the windows over the signal, this threshold is calculated and 
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then compared with the smoothed signal to find the regions in which the QRS may lie. 

A parameter for noise tolerance can also be added to the thresholding function, which 

enables the flexibility of working with noisy signals. 

 

 
fig.  5-8 Effects of Thresholding 

Morphological Post processing 

The regions found during the thresholding process might suffer from the following 

problems: 

a. The same QRS complex can be divided into multiple regions 

b. Some regions might be crated due to the presence of noise and appear as small 

spikes, which must be removed 

For this purpose, morphological opening and closing is used. The thresholded result is 

first subjected to morphological closing using a vector of ones of length 120ms (equal 

to the QRS average length,0.12 sf ) as the structuring element in order to remove breaks 

within a single QRS complex. Afterwards morphological opening is carried out with a 
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vector of ones of length equal to 40ms (one third of the average QRS length,0.04 sf ) to 

remove any regions smaller than 40ms. Isolated regions are also removed.  

 
fig.  5-9 After Morphological Post processing 

Detection of the Fiducial Points 

The Fiducial point in each of the QRS regions detected is found by searching for the 

sample point within each region at which the local maximum of the band pass filtered 

signal w.r.t. that region lies.  

 

 
fig.  5-10 Detection of the QRS Fiducial Point 

5.4.1.2 Function Reference 

This algorithm is implemented in the Matlab-7 function detectQRS_LT. 
[indxon indxoff R]=detectQRS_LT(s,FS,NOISEFAC) 
% Author Name: Fayyaz ul Amir Afsar Minhas 
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% Date: 13Sep05, Modified: 14Oct05 
% Description: QRS Detection using the length transform 
% Usage:  
%     [indxon indxoff R]=detectQRS_LT(s,FS,NOISEFAC) 
%     %s: Input ECG Signal (nx1) 
%     %FS: Sampling Freq (Hz) 
%     %NOISEFAC: Noise filter multiplier  
%       (thresholds all values below NOISEFAC*SquareSignal) 
%        Optional: Default Value = 0 
%     indxon: QRS Onsets (1 x number_of_qrs) 
%     indxoff: QRS Offsets (1 x number_of_qrs) 
%     R: Location of the Fiducial Point (1 x number_of_qrs) 
% Internal Parameters: 
%         F_order=100; %BPF Filter Order 
%         Fc_LPF=25; %LPF Cutoff Freq (Hz) 
%         Fc_HPF=10; %HPF Cutoff Freq (Hz) 
%         MF=1.5; %Multiplier of mean in threshold function  
%         SF=+0.0;Multiplier of stdev in threshold function 
%                (MF*mu+SF*std) 
%         T_win=4*FS;%Thresholding Window Size 
%         QRS_Size=0.12*FS; %Approx QRS Complex Size 
%         Min_QRS_Size=0.04*FS; %Minimum QRS Size  
 

5.4.1.3 Results 

This QRS Detection algorithm works accurately on a wide variety of signals and 

sampling frequencies. The algorithm takes 1 second for processing 74000 samples on a 

P-IV 1.8GHz processor with 248MB RAM. The algorithm was tested using the QTDB. 

The sensitivity and positive predictivity are both 99.90%, which indicate the high 

accuracy of the system.  

5.4.1.4 Advantages 

The main advantage of this algorithm is its high accuracy in terms of QRS 

Detection and its speed of operation. Moreover it has a very high tolerance to noise. 

5.4.1.5 Problems and Deficiencies 

However this algorithm suffers from the following problems: 

a. It does not give accurate QRS onsets and offsets. However its detection 

accuracy is excellent. 

b. It gives no information about the QRS morphology. Specific extensions are 

needed to detect the onset and offset and produce a decision about QRS 

morphology. 
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c. It is expected to detect P-waves as the QRS Complex if no QRS is present 

(Heart Blocks). This problem can be avoided by using a larger window during 

thresholding but then some of the QRS complexes might be missed. 

5.4.2 Pan Tompkins’s Algorithm for QRS Detection 

Pan and Tompkins [43] proposed a real time QRS detection algorithm based on 

analysis of the slope, amplitude and width of QRS complexes. The algorithm includes a 

series of filters and methods that perform low pass, high pass, derivative, squaring, 

integration, adaptive thresholding, and search procedures. The following figure 

illustrates the steps of the algorithm in schematic form. 

 
fig.  5-11 QRS Detection using Pan-Tompkins's Algorithm 

The lowpass filter used in Pan-Tompkins algorithm has integer coefficients to reduce 

computational complexity, with the transfer function defined as  
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 The output y(n) is related to the input x(n) as 

 1( ) 2 ( 1) ( 2) [ ( ) 2 ( 6) ( 12)]
32

y n y n y n x n x n x n= − − − + − − + −  (5.8) 

The high pass filter used in this algorithm is implemented as an allpass filter minus a 

lowpass filter. The lowpass component has the transfer function  
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1

(1 )( )
(1 )lp

zH z
z

−

−

−
=

−
 (5.9) 

The input-output relationship is 

 ( ) ( 1) ( ) ( 32)y n y n x n x n= − + − −  (5.10) 

The transfer function of the highpass filter is specified as 

 16 1( ) ( )
32hp lpH z z H z−= −  (5.11) 

Equivalently, the output p(n)of the highpass filter is given by the difference equation 
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 1( ) ( 16) [ ( 1) ( ) ( 32)]
32

p n x n y n x n x n= − − − + − −  (5.12) 

with x(n) and y(n) being the input and output signals respectively.  

The derivative operator used by Pan and Tompkins is specified as  

 1( ) [2 ( ) ( 1) ( 3) 2 ( 4)]
8

y n x n x n x n x n= + − − − − −  (5.13) 

approximates the ideal differential operator between dc and 30 Hz. The derivative 

procedure suppresses the low frequency components of the P and T waves and 

provides a large gain to the high frequency components arising from the high slopes 

of the QRS complex. 

The squaring operation makes the result positive and emphasizes large differences 

resulting from QRS complexes; the small differences arising from P and T waves are 

suppressed. The high frequency components in the signal related to QRS complex are 

further enhanced. 

The output of a derivative based operation will exhibit multiple peaks within the 

duration of a single QRS complex. The Pan-Tompkins algorithm performs smoothing 

of the output of the preceding operations through a moving window integration filter as 

 1( ) [ ( ( 1)) ( ( 2)) ...... ( )]y n x n N x n N x n
N

= − − + − − + +  (5.14) 

The choice of the window width N is to be made with the following considerations: too 

large a value will result in the outputs due to the QRS and T waves being merged, 

whereas too small a value could yield several peaks for a single QRS. 

5.4.2.1 Implementation 

An open source implementation of a QRS detector based on the Pan Tompkins’s 

Algorithm by G. D. Clifford was modified to remove the QRS Fiducial marks detected 

within 120ms (the post-conditioning stage). The original algorithm implements special 

rules for changing the thresholds adaptively based on the RR Intervals in case a beat is 

missed or falsely detected. However, such rules were not implemented because the 

performance of the algorithm was even then found to be outstanding.  

This implementation divides the input signals into windows, for each of which QRS 

detection is carried out separately using different thresholds. Band pass filtering is 

carried out using cascaded LPF and HPF designed using SPTOOL instead of those 

proposed in the original paper. The differentiation is carried out using the diff operator 
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instead of using the operator specified in the original paper. Afterwards squaring is 

performed. The moving window integrator is implemented by using a 7 element (for FS 

= 250 Hz) summing filter. Afterwards thresholding is performed which is proportional 

to the maximum value of the integrated result within the window. This results in the 

detection of QRS regions in which the maximum value is to taken as the QRS Fiducial 

point. If multiple fiducial points are detected within 120ms of each other, only one is 

kept.  

 
fig.  5-12 Different Steps in QRS Detection 

5.4.2.2 Function Reference 

This algorithm is implemented in the Matlab 7 file detectQRS_PT. 
% Author Name: Fayyaz ul Amir Afsar Minhas  
% Date: 14Sep05 
% Description: Function wrapper to Pan Tompkin's Algo 

Implementation by Gari (modified to remove Fiducial Points lying 
within 120ms of each other) 

% Usage:  
%     [R]=detectQRS_PT(s,FS) 
%     %s: Input ECG Signal (nx1) 
%     %FS: Sampling Freq (Hz) 
%     R: Location of the Fiducial Point (1 x number_of_qrs) 
% Internal Parameters: 
%         thresh=0.12;  Threshold Value 
%         testmode=0;  Shows graphs of different steps if 1 
%         twind=1000;   Window Size in seconds 
%         dt=0.12*FS;   Duration of the QRS  

5.4.2.3 Results 

This algorithm gives 99.98% sensitivity and positive predictivity on QTDB. It 

requires 1.5s for processing ~74000 samples at 250 Hz Sampling Frequency. 



 82

5.4.2.4 Advantages 

The main advantage of this algorithm is its high accuracy in terms of QRS 

Detection and its speed of operation. Moreover it has a very high tolerance to noise. 

5.4.2.5 Problems and Deficiencies 

However this algorithm suffers from the following problems: 

d. It does not give QRS onsets and offsets. However its detection accuracy is 

excellent. 

e. It gives no information about the QRS morphology. Specific extensions are 

needed to detect the onset and offset and produce a decision about QRS 

morphology. 

5.4.3 Use of Haar Wavelets for QRS Detection and Delineation 

Gutierrez et al. [44] propose the use of the Haar wavelets for QRS detection. In this 

algorithm the input signal is subjected to CWT with a haar wavelet at scale 10 (for 

Sampling Frequencies up to 500Hz). The resultant waveform is then thresholded to 

obtain the QRS Fiducial points, no two of which are made to lie within 200ms of each 

other. The threshold is proportional to the maximum value of the result of the CWT. 

This algorithm has been modified in a way that it gives both the QRS onsets and offsets 

and the fiducial points. The various steps in the modified implementation include: 

a. Band Pass Filtering 

Band Pass filtering (10-25Hz) is performed with cascaded LP and HP FIR filters of 

order 100. 

b. Evaluation of the CWT 

CWT is computed for the Prefiltered signal using Matlab’s built-in function CWT. 

Prior to taking this CWT the signal is padded at both ends with replicated data from the 

signal, which is subsequently removed. The CWT is performed using the Haar wavelet 

at a scale of 12. The figure below shows the effects of taking the CWT.  
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fig.  5-13 CWT of the ECG Signal 

c. Differencing 

The output of the CWT is then differentiated using the diff Matlab operator. 

 
fig.  5-14 Different Steps in QRS Detection: BPF, CWT and Differencing 

d. Squaring 

The differenced result is then squared in order to suppress low values. 

e. Thresholding 

The RMS value of the squared result is computed for each window of 4s. The 

threshold is set proportional to this RMS value. Thresholding gives the QRS regions. 
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f. Morphological post processing 

Morphological post-processing is carried out in a fashion similar to the one 

explained earlier. 

g. Detection of the Fiducial Points 

Fiducial point within the QRS is taken as the maximum value of the differentiated 

and squared result. 

The figure below illustrates each of the steps in detail.  

 
fig.  5-15 Squaring and Thresholding 

 
fig.  5-16 Detection of the QRS Fiducial Points 

5.4.3.1 Function Reference 

This function is implemented in the function Matlab -7 m-file detectQRS_Haar2. 
[indxon indxoff R]=detectQRS_Haar2(s,FS) 
% Author Name: Fayyaz ul Amir Afsar Minhas 
% Date: 15Sep05 
% Description: Haar Wavelet Based QRS Detector using 

Prefiltering and Morphological Post Processing 
% Usage:  
%     qrso=detectQRS_Haar2(s,FS) 
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%     %s: Input Coloumn Vector (ECG Signal) 
%     %FS: Sampling Freq (Hz) 
%     %indxon: Index of onset 
%     %indxoff: Index of Offset 
%     %R : Fiducial Marks for QRS 
% Internal Parameters 
%         F_order=100; %HPF & LPF Filter Order 
%         Fc_LPF=25; %LPF Cutoff Freq (Hz) 
%         Fc_HPF=10;  %HPF Cutoff Freq (Hz) 
%         P=25; %Padding for CWT (P at start and P at end) 
%         wname='haar'; %Wavelet Name  
%         scale=12; %Scale 
%         T=0.15; %Thresholding Function Multiplier  
%         T_win=1000; %Threshold update window size  
%         QRS_Size=0.12*FS; %Approx Size of QRS Complex  
%         Min_QRS_Size=0.06*FS; %Min Size of QRS Complex. 
 

5.4.3.2 Results 

This method gives a detection Sensitivity/Specificity of 99.8% with onset and offset 

detection errors being 10ms and 12ms respectively. It takes 1s for processing ~74000 

samples on a P-IV, 1.8GHz, 248MB RAM Machine.  

5.4.3.3 Comments 

This method demonstrates the efficacy of the system in QRS detection and 

delineation and it can also be extended to the detection and delineation of the P and T 

waves in the ECG. It offers high detection accuracy with low errors in determining the 

onset and offsets of the QRS complex with computation time comparable with the 

previously described algorithms. 

5.4.4 Use of DWT for QRS Detection and Delineation 

In [14], the authors have proposed a robust and highly accurate QRS detection and 

delineation system based on the DWT. It gives not only the QRS Fiducial points but 

also the complex’s onsets and offsets along with the morphology. The theoretical and 

implementation details of this method are discussed in detail henceforth.  

5.4.4.1 Theory of Operation 

The DWT of a signal ( )x t  is given by 
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 1( ) ( ) , 0a
t bW x b x t dt a

aa
ψ

∞

−∞

−⎛ ⎞= >⎜ ⎟
⎝ ⎠∫  (5.15) 

The greater the scale factor a  is, the wider is the basis function and consequently, the 

corresponding coefficients give information about the lower frequency component of 

the signal and vice versa. In this way, the temporal resolution is higher at higher 

frequencies than at low frequencies, achieving the property that the analysis window 

comprises the same number of periods for any central frequency. If the wavelet ( )tψ  is 

the derivative of a smoothing function ( )tθ , it can be shown that the wavelet transform 

of a signal ( )x t  at a scale a  is 

 ( ) ( ) ( )a a
dW x b a x t t b dt
db

θ
+∞

−∞

⎛ ⎞= − −⎜ ⎟
⎝ ⎠ ∫  (5.16) 

Where ( )1( )a
tt aa

θ θ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 is the scaled version of the smoothing function. The 

wavelet transform at scale a  is proportional to the derivative of the filtered signal with 

a smoothing impulse response at scale a . Therefore, the zeros crossings of the WT 

correspond to the local maxima or minima of the smoothed signal at different scales, 

and the maximum absolute values of the wavelet transform are associated with 

maximum slopes in the filtered signal. During QRS detection, the ECG waves are to be 

detected which are composed of slopes and local maxima or minima at different scales, 

occurring at different time instants within the cardiac cycle. This establishes the need of 

using such a wavelet.  

If The scale and the translation parameters are discretized such that 2ka =  and 2kb l= , 

the transform is then called the dyadic wavelet transform with the basis functions 

 / 2
, ( ) 2 (2 ) ,k k

k l t t l k l Zψ ψ− − += − ∈  (5.17) 

The dyadic wavelet transform for discrete time signals is equivalent, according to 

Mallat’s Algorithm, to the octave filter bank, and can be implemented as a cascade of 

identical cells (low and high pass FIR filters) as shown below. 

 
fig.  5-17 The Dyadic Wavelet Transform 
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The down samplers after each filter remove the redundancy of the signal representation. 

As side effects they make the signal representation time-variant, and reduce the 

temporal resolution of the wavelet coefficients for increasing scales. In order to 

overcome this problem, a modified version of this algorithm is used, which is shown 

below. In this algorithm , the decimation stages have been removed and the filter 

impulse responses of the previous scale are interpolated to contain twice as many points 

as in the previous scale. 

 
fig.  5-18 The Modified Algorithm for DWT (Algorithm a trous) 

The FIR filter impulse responses for the above implementation are 

 
[ ] [ ] [ ] [ ] [ ]{ }
[ ] [ ] [ ]{ }
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g n n n
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δ δ

= + + + + + −

= + −
 (5.18) 

As these filters have linear phase, the outputs of the filters can be realigned in order to 

present the same delay with respect to the original ECG.  

Various components of the ECG register themselves as maximas and minimas at 

different scales. The figure below shows several simulated waves similar to those in the 

ECG, together with the first five scales of their DWT.  

 
fig.  5-19 Response of the modified DWT algorithm to simulated waves of the ECG [14] 
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As exemplified by (a), monophasic waves produce a positive maximum-negative 

minimum pair along the scales, with a zero crossing between them. Each sharp change 

in the signal is associated to a line of maxima or minima across the scales. In wave (b), 

which simulates a QRS complex, it can be observed that the small Q and S wave peaks 

have zero crossings associated in the WT, mainly at scales 12  and 22 . P or T-like 

waves (c) have their major component at scales 42  to 52 , whereas artifacts like (d) 

produce isolated maximum or minimum lines which can be easily discarded. If the 

signal is contaminated with high-frequency noise (e), the most affected scales are 12  

and 22 , being higher scales essentially immune to this sort of noise. Baseline wander (f) 

affects only at scales higher than 42 . The figure below shows the results of our 

implementation of the modified algorithm on a similar simulated signal and it compares 

quite accurately to the one from the original paper. 

 

 

fig.  5-20 The response of our implementation of [14] DWT to the simulated ECG waves 

Using the information of local maxima, minima and zero crossings at different scales 

the algorithm is able to detect the Fiducial points in the QRS complexes and obtain the 

location of the onset and offset along with that of the individual waves.  

5.4.4.2 Detection of the QRS Complex Individual Waves and Determination of 

QRS Morphology 

The QRS Detection process is based on simple thresholding of the WT (details) at 

scale 12 . The threshold is computed for each window of 65535 samples (Sampling 

frequency of 250Hz) and is proportional to the RMS value of the WT, Mathematically 
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this threshold is given by [ ]( )1
1

2
RMSQRS W x n∈ = . The thresholded result is then 

morphologically post processed, to obtain the QRS regions.  

 
fig.  5-21 Response of the WT at the first two scales to the given ECG signal 

 
fig.  5-22 Effects of thresholding and morphological postprocessing 

The QRS Fiducial point is flanked by a pair of maximum moduli with opposite signs at 

scale 22 , namely at pren and postn and is found out by searching for the root of the WT 

representation at scale 22  between pren and postn within each extended QRS region. The 

extended QRS regions are obtained by widening the QRS regions obtained through the 

thresholding explained earlier. The delineator looks before pren and after postn for 

significant maxima of [ ]22
W x n accounting for other adjacent slopes within the QRS 

complex. To consider a local maximum modulus as significant, it must exceed the 

threshold, 
preQRSγ or 

postQRSγ respectively for previous or subsequent waves. Small spikes 

in thresholding are removed using morphological opening. Moreover, the positive 

minimas and negative maximas are removed. If redundant modulus maximas occur than 

each such sequence is replaced by a single modulus maxima having the greatest value 

of all. The figures below show these steps in detail. The sequence of positive maximas 

( M + s) and negative minimas ( m− s) thus obtained (called the maxima string 

representation) is used to determine the QRS morphology using a simple rule based 
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approach. Figure 5-24 shows this classification of the QRS Morphology is detail. If the 

maxima string obtained for a QRS region is not one of those shown in the figure, it is 

classified as ‘Unknown’ Morphology and subjected to a spike removal algorithm which 

includes protection measures, based on time interval and sign rules, to reject notches in 

waves and anomalous deflections in the ECG signal. If the morphology is QRS or RSR’ 

then special checks are made to ascertain the initial classification result as both QRS 

and W-type complexes and the RSR’ and M-type complexes have the same maxima 

string representation. The differentiation between these categories is done on the basis 

of signs of the signal values in the original signal. The zero crossings between the 

significant slopes at scale 12  are assigned to wave peaks, and labeled depending on the 

sign and the sequence of the maximum moduli.  

 
fig.  5-23 Detection of QRS Individual Waves and the QRS Morphology. It shows a single QRS 

region and different thresholds and zero crossings corresponding to the given signal. It also 
shows redundant modulus maxima (two M+). In such a case the one with the maximum absolute 

value is retained. Any positive minimas or negative maximas (if present) are also removed to 
produce the Maxima String Representation for a QRS region. In this case the string is m-M+m- 

M+, which corresponds to the morphology QRS. 

 
fig.  5-24 Classification of the QRS Morphology 
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5.4.4.3 Determination of the QRS Onset and Offset 

The onset (end) of the QRS is before (after) the first (last) significant slope of the 

QRS, which is associated with a maximum of [ ]22
W x n . So, we first identify the 

samples of the first and last peaks associated with the QRS in [ ]22
W x n , say firstn and 

lastn . Then, candidates to onset and end are determined by applying two criteria:  

i) searching for the sample where [ ]22
W x n  is below a threshold 

(
onQRSξ or 

endQRSξ ) relative to the amplitude of the maximum modulus 

( 22 firstW x n⎡ ⎤⎣ ⎦  or [ ]22 lastW x n );  

ii) ii) searching for a local minimum of [ ]22
W x n  before firstn or after 

lastn . Finally the QRS onset and end are selected as the candidates 

that supply the nearest sample to the QRS fiducial point. 

 
fig.  5-25 QRS Onset and Offset Detection 

5.4.4.4 A Note About the Thresholds 

The thresholds are given by 
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The threshold multipliers [ ]2 2 3 4 5 6χ χ χ χ χ χ χ=  were tuned using 

Genetic Algorithms with the criterion function to reduce the sum of the mean of the 

error in onsets and offsets for a number of beats of different subjects from the QTDB. 

The original values in the paper are: 

[ ]0.06 0.09 0.05 0.07 0.125 0.71χ =  

The error in segmentation using these parameter values was found to be 3.5 samples 

(onset), 2.67 samples (offset) at a sampling rate of 250Hz. These values were improved 

using Genetic Algorithms as detailed in results. Ten subjects from the QTDB were used 

for training. The mutation probability was set to be 5%. Two point cross-over operator 

was used along with elitism.  

5.4.4.5 Function Reference 

This function is implemented in the Matlab-7 function m-file DetectQRS_Del2. 
[qrs_s qrs_e qrs_Absolute]=DetectQRS_Del2(S,FS,param) 
% Author Name: Fayyaz ul Amir Afsar Minhas 
% Date: 20Sep05 
% Description: DWT Based QRS Det and Deln: An implementation of 

'A Wavelet-Based ECG Delineator: Evaluation on Standard Databases' 
% Usage:  
%     [indxon indxoff R]=detectQRS_LT(s,FS,NOISEFAC) 
%     %s: Input ECG Signal (nx1) 
%     %FS: Sampling Freq (Hz) 
%     %param: Parameters [1 Xi] (see doc.) 
%           Optional: Default Value are the original ones from 

the paper i.e [1 0.06 0.09 0.05 0.07 0.125 0.17] 
%     qrs_s: QRS Onsets (1 x number_of_qrs) 
%     qrs_e: QRS Offsets (1 x number_of_qrs) 
%   qrs_Absolute: the Fiducial Point (1 x number_of_qrs) 
% Internal Parameters: 
%   QRS_Size=0.12*FS; %Approx Size of QRS Complex (Samples) 
%   Min_QRS_Size=0.04*FS; %Minimum QRS Size (Spike Removal) 
% Note: Works only for FS=250Hz 

5.4.4.6 Results 

This algorithm gives excellent QRS delineation results i.e. a mean absolute error of 

5 samples in the detection of QRS onsets (2.5 sample error) and offset (2.5 sample 

error) at 250Hz sampling frequency for the whole QTDB using annotations by the first 

expert cardiologist. The mean error (not absolute) is even lower. The mean error with 

standard deviation is 0 8±  ms and the offset error is 0 9± ms, Which makes the QRS 

complex onsets and offsets detected by this algorithm perfect for use for all practical 

purposes.  



 93

 

 
fig.  5-26 Results of DWT Based QRS Detection 

However it’s QRS detection accuracy is lower than that of the Pan and Tompkins’s 

algorithm (Positive Predictive Values and sensitivity = ~99.1%). This is because of the 

presence of noise in some ECG signals of the QTDB since QRS detection is based on 

the WT at scale 12 , which is severely affected by noise. The implantation of a noise 

reduction algorithm prior to this process can reduce this problem.  

 
fig.  5-27 False Detection due to Noise 
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5.4.4.7 Limitations 

This algorithms works for sampling frequency of 250Hz. In order to work with 

other sampling frequencies, the filters used in the WT need to be modified or the input 

signal be resampled. 
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CHAPTER 6 
DETECTION OF THE P AND T WAVES 

The detection of the T and P waves is the next step after the detection and 

delineation of the QRS complex. The P wave reflects Artrial depolarization whereas the 

T wave is the representation of the ventricular repolarization The detection and 

delineation of these waves is of critical importance in analyzing both the arterial and 

ventricular activity of the heart. In terms of disease classification, the P-wave is 

responsible for the classification of a majority of arterial disease whereas the T-wave is 

used in the classification of infarctions, ischemia and ventricular hypertrophies.  

6.1 Problems in the Detection of the P and T waves 

Many problems manifest themselves in the detection of the P and T waves, some of 

them are given below: 

a. It is difficult to choose a search window in relation to the QRS reference for a 

beat. Especially for the P-wave, which may occur without a QRS (heart blocks). 

b. The amplitude of the P-wave might be very small. 

c. Both the P and T waves occur in a wide variety of morphologies, which makes 

the task of their detection difficult. 

d. The P wave can occur very close to the T wave and also to the QRS, which 

makes its separation an issue. 

e. In some cases a U-wave may also occur after the T-wave, which must be 

segmented from both the P and the T waves. 

A P/T detection algorithm must be able to deal with all of the above mentioned 

problems. 

6.2 Literature Survey 

A variety of P-wave detection methodologies exist in the literature. In [45], a real 

time method for the detection of the P-waves is presented. This method first removes 

the baseline from the signal by using cubic function and parabolic corrections. After the 
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baseline removal process, the differential of the TQ interval is computed using the 

following operator: 

 ( )'
2 1 1 22 2

10
s

i i i i i
fy y y y y− − + += − − + +  (6.1) 

Where sf  is the sampling frequency. Afterwards the maxima of this differential within 

5s is found and is designates as maxD . On the basis of this value, two thresholds are 

setup i.e. 

 1 1 max 2 2 maxmax(N ,1.0) max(N ,0.25)T D T D= =  (6.2) 

1T  is for the detection of the P-wave and 2T is for location of the onset and offset of the 

P-wave. Both these thresholds are in /mv s . The coefficients 1N  and 2N  can be 

determined by adjustment from many cases. The P-wave detection accuracy is reported 

at 92.6%. [46] gives a method for P-wave detection in high resolution ECG, which is 

based on the use of forward and reverse filtering of the Signal Averaged ECG using a 

HPF. [47] gives a P-wave detection method using the Wavelet transform. In this 

method a technique similar to the one proposed in [14] is proposed for P-wave 

detection, which uses the ratio of the WT of the signal at scale 32  and 32 . Another WT 

based approach is given in [48] for the detection of the P and T waves along with the 

QRS complexes. Other methods include [48-53]. 

6.3 Implemented Schemes for T Wave Detection 

Two schemes have been implemented for the detection of the T-wave i.e. 

a. Use of Joeng’s Differential Operator for T wave detection [54] 

b. Use of DWT for T-wave detection [14] 

Each of these methods is described below. 

6.3.1 Use of Joeng’s Operator for T wave detection 

This approach is based upon the method given in [54]. T-wave detection is carried 

out by the following steps 

a. Base line removal 

Prior to the detection of the T-wave, the baseline is removed from the signal using 

techniques described in the next chapter. 
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b. Band Pass Filtering 

The T-wave has its frequency content in the range 0.05-15Hz. Therefore a BPF FIR 

filter is used to BPF the given signal. This operation makes the algorithm more noise 

tolerant. 

 
fig.  6-1 Effects of Band Pass Filtering 

c. Determination of the search window 

The algorithm searches for the T-wave, after a QRS complex has been detected. The 

T wave is expected within a specified time window. The start and duration of the 

window depends on the RR interval, as shown below.  

 
fig.  6-2 The T-wave Window 
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 (6.3) 

The above windowing scheme was the one originally given in the paper, however 

better results were obtained using the following window, which was developed by us 

through statistical analysis and curve fitting over the QTDB. 
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 (6.4) 

d. Use of Joeng’s Differential Operator 

Within the window after a QRS, the Joeng’s differential operator is applied, which 

is given by 
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 (6.5) 

where x(n) is the input ECG signal. This differentiator operator has a flatter frequency 

magnitude response at higher frequencies, thus effectively removal any noise artifacts. 

Smoothing using a moving window integrator (proposed in the original method) is not 

performed, because it decreases the temporal resolution of the detection process.  

 
fig.  6-3 Application of the Joeng's Differential Operator 

e. Detection of the T-wave fiducial point (peak) 

The T-wave Fiducial point is flanked by a pair of maximum moduli with opposite 

signs in the derivative function ( )F n  in a T-wave window, namely at 
Tpren and 

Tpostn and is found out by searching for the root of the derivative function between 

Tpren and 
Tpostn within each T-wave window. Also the slope magnitude needs to be at 

least 0.006mV/s for a T-wave to be detected. 
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fig.  6-4 Determination of the QRS Onset, Offset and the Fiducial Point 

f. Determination of the T-wave onsets and offsets 

Then, candidates to onset and end are determined by applying two criteria: i) 

searching for the sample where the absolute value derivative function is below a 

threshold ( ( )1on T TT preF nχΛ = or ( )2end T TT postF nχΛ = ) ; ii) searching for the 

minimum absolute value of the derivative function before   
Tpren and 

Tpostn . Finally the 

QRS onset and end are selected as the candidates that supply the nearest sample to the 

QRS fiducial point. The parameters 1T
χ and 2T

χ  need to be optimized using Genetic 

Algorithms. 

6.3.1.1 Function Reference 

This algorithm is implemented in the Matlab-7 function file detectT.m. 
[T_on T_off T]=detectT(RRI,qrs_off,FS,blr) 
% Author Name: Fayyaz ul Amir Afsar Minhas 
% Date: 25Sep05, Modified: 18Oct05 
% Description: QRS Detection using the Joeng's Operator 
% Usage:  
%     [T_on T_off T]=detectT(RRI,qrs_off,FS,blr) 
%     %RRI: RR Intervals (2xn). n=number of QRS Complexes-1 
%       The first row contains the location of the QRS The 
second row contains the value of RR for the corresponding QRS 
%     %qrs_off: QRS Offsets (1xno_of_qrs) 
%     %FS: Sampling Freq (Hz) 
%     %blr: Baseline Removed Prefiltered Input ECG 
%     %param: Parameters [Xi1 Xi2] 
%           Optional: Default Value are [0.09 0.08] 
%     T_on: T-wave Onsets (1xno_of_qrs) 
%     T_off: T-wave Offsets 
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%     T: Location of the Fiducial Point (1 x number_of_qrs) 

6.3.1.2 Results 

The results of this algorithm in terms of T-wave detection and onset/offset 

calculation have not been formalized due to the immediate implementation of the DWT 

based approach described next, which gives a better subjective performance. However 

it has been found to give a very good performance on the QTDB which has been 

observed through visual inspection. The figure below shows some examples of QRS 

detection over the QTDB. 

  

  
fig.  6-5 Some Examples of T-wave Detection on QTDB using Joen'g Differential Operator 

6.3.1.3 Comments 

This algorithm performs quite well in the detection and delineation of the T-wave. 

However, it currently gives no information about the morphology of the T-wave for 

which additional rules need to be added. 
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6.3.2 Use of DWT for T-wave detection 

This method is based on the algorithm proposed by [14] and is quite similar to the 

QRS detection and delineation algorithm using DWT explained earlier in the previous 

chapter. 

The process for multiscale T wave detection and delineation is as follows: first of all, 

we define a search window for each beat, relative to the QRS position and depending on 

a recursively computed RR interval. Within this window, we look for local maxima of 

[ ]42
W x n  obtained by applying the modified WT algorithm to the baseline removed 

ECG signal. If at least two of them exceed the threshold T∈ , a T-wave is considered to 

be present. In this case, the local maxima of WT with amplitude greater than Tγ  are 

considered as significant slopes of the wave, and the zero crossings between them as the 

wave peaks. After this thresholding, morphological post processing is also carried out to 

remove spikes and to compute the T-wave region effectively. Depending on the number 

and polarity of the found maxima, we assign one out of six possible T wave 

morphologies: positive (+), negative (-), biphasic (+/- or -/+), only upwards, and only 

(figure below).   

 
Fig.  6-6 Different T-wave Morphologies 



 102

To identify the wave limits, we used the same criteria as for QRS onset and end, with 

thresholds 
ONTξ and 

ENDTξ  applied to scale 42 .  The thresholds are given as: 
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The RMS value above is calculated for each T-wave window  

6.3.2.1 Function Reference 

This algorithm is implemented in the Matlab-7 function file DetectT_Del2.m.  
[T_s T_e]=DetectT_Del2(S,FS,RRI,qrs_s,qrs_e) 
% Author Name: Fayyaz ul Amir Afsar Minhas 
% Date: 25Sep05 
% Description: T wave QRS Detection using the DWT 
% Usage:  
%     [T_s T_e]=DetectT_Del2(S,FS,RRI,qrs_s,qrs_e) 
%     %S: Baseline Removed Prefiltered Input ECG 
%     %FS: Sampling Freq (Hz) 
%     %RRI: RR Intervals (2xn). n=number of QRS Complexes-1 
%       The first row contains the location of the QRS  
%       The second row contains the value of RR for the 

corresponding QRS 
%     %qrs_s: QRS Start (1xno_of_qrs) 
%     %qrs_s: QRS End (1xno_of_qrs) 
%     T_s: T-wave Onsets (1xno_of_qrs) 
%     T_e: T-wave Offsets 
% All T_on,T_off and T vectors contain the location of 

the corresponding siginifcant points adjacent to the related QRS 
complexes. If no T-wave occurs adjacent to a complex the 
corresponding entry in all these    vectors is zero. 

% Internal Parameters: 
%     T_Size=ceil(0.15*FS); %Approx Size of T Complex (Samples) 
%     Min_T_Size=ceil(0.05*FS); %Min Size of T Complex 

(Samples) 
%     Epsilon, kappa and T-wave window control parameters 

6.3.2.2 Results 

The figure below shows some examples of T-wave detection over the QTDB. The 

Mean error and the standard deviation in detecting the start of the T-wave using this 

algorithm are -0.4748 +/- 10.6 samples at 250Hz, for the QTDB. This corresponds to an 

error of 0ms +/- 42ms. The mean value of the absolute error is 7.2 samples (29ms). 
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fig.  6-7 Some Examples of T-wave Detection using DWT 

6.4 Implemented Schemes for P Wave Detection 

The same methods used for T-wave detection can also be used for the detection of 

the P-waves. The search window for the P-wave in both the algorithms is taken as the 

TQ segment after a T-wave. 

6.4.1 Use of DWT for P-wave Detection 

The P-wave has the following morphologies, which can be detected using this 

algorithm positive (+), negative (-), and biphasic (+/-, -/+). The thresholds used are 

given below and they need to be optimized. 
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6.4.1.1 Function Reference 

This algorithm is implemented in the Matlab-7 function file DetectP_Del2. 
[P_s P_e]=DetectP_Del2(S,FS,RRI,qrs_s,qrs_e,T_off) 
% Author Name: Fayyaz ul Amir Afsar Minhas 
% Date: 25Sep05 
% Description: P-wave Detection using the DWT 
% Usage:  
%     [P_s P_e]=DetectP_Del2(S,FS,RRI,qrs_s,qrs_e,T_off) 
%     %S: Baseline Removed Prefiltered Input ECG 
%     %FS: Sampling Freq (Hz) 
%     %RRI: RR Intervals (2xn). n=number of QRS Complexes-1 
%       The first row contains the location of the QRS  
%       The second row contains the value of RR for the 

corresponding QRS 
%     %qrs_s: QRS Start (1xno_of_qrs) 
%     %qrs_e: QRS End (1xno_of_qrs) 
%     T_off: T-wave Offsets 
%     %P_s: QRS Start (1xno_of_qrs) 
%     %P_e: QRS End (1xno_of_qrs) 
% All P_s,P_e vectors contain the location of the 

corresponding 
%   siginifcant points adjacent to the related QRS complexes. 

If no P-wave 
%   occurs adjacent to a complex the corresponding entry in all 

these  
%   vectors is zero. 
% Internal Parameters: 
%     T_Size=ceil(0.15*FS); %Approx Size of P wave (Samples) 
%     Min_T_Size=ceil(0.05*FS); %Min Size of P wave (Samples) 
%     Epsilon, kappa and P-wave window control parameters 

6.4.1.2 Results 

The results of this algorithm in terms of P-wave detection and onset/offset 

calculation have not been formalized yet. However it has been found to give a 

satisfactory performance on the QTDB which has been observed through visual 

inspection. The figure below shows some examples of P-wave QRS detection over the 

QTDB. 
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fig.  6-8 Some Examples of P-wave Detection 

6.4.2 Problems in P-wave Detection 

Currently none of algorithms implemented address the issue of isolated and multiple 

P-waves (which may occur in heart blocks). 

6.5 Future Directions on P/T Detection 

In order to make the detection of the P and T waves reliable, it is hereby proposed 

that the annotations in the QTDB for P/T waves be used along with the RR data for the 

corresponding beats to develop a rule for determining the start and endpoints of the 

windows for T and P waves in reference to the QRS end based on the RR interval 

employing clustering techniques. 
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CHAPTER 7  
BEAT CLASSIFICATION 

In this chapter we present the implemented techniques for the classification of 

different types of beats in the ECG. This component is of vital importance in the 

design and implementation of a practical Disease Classification System. This chapter 

presents the objectives and significance of beat classification and arrhythmia 

detection. A short review of different types of beats and arrhythmias is also given 

followed by a literature survey of techniques in use for detecting cardiac arrhythmias 

and beat classification. A description of the techniques implemented for beat 

classification is rendered along with the results.  

7.1 Objectives and Significance of Beat Classification 

Arrhythmias in the heart stem from irregular pacing in the heart due to improper 

electrical activity in the heart. As has been explained in chapter-2 the pacing of the 

heart is due to the electrical activity generated by the pacemaker sites (SA node under 

normal conditions) in the heart which regulate the rate at which the heart beats and the 

cardiac output. Any discrepancy in the pacemaker sites or any conduction blockage 

may cause arrhythmias which may or may not be life threatening.  

Though some of the cardiac arrhythmias are mostly benign but they may also reflect 

the presence and/or after-effects of certain types of cardiac abnormalities. Therefore 

the detection of irregular beats resulting from arrhythmias is of prime importance to 

ensure proper diagnosis of cardiac abnormalities.  

7.2 Types of Beats/Arrhythmias 

In this section we describe different types of cardiac arrhythmias along with a 

brief description of their causes and effects on the ECG which can be used for their 

diagnosis. Some common types of heart rhythms are listed below. 
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7.2.1 Normal Sinus Rhythm (NSR) 

During normal operation of the heart, the SA node acts as the trigger for the 

electric impulse that spreads across the heart. NSR is characterized by: 

• Regular and Upright P-waves in leads II, III and aVF 

• Heart rate of 60-100bpm 

The ECG reflecting NSR is shown below. 

 

 
fig.  7-1 NSR with heart rate of 85bpm 

7.2.2 Respiratory Sinus Arrhythmia (RSA) 

Sinus arrhythmia is the mild acceleration followed by slowing of the normal 

rhythm that occurs with breathing as show below. 

 
fig.  7-2 RSA 

7.2.3 Sinus Tachycardia 

A heart rate faster than 100bpm is considered a tachycardia. This number varies 

with age, as the heartbeat of a younger person is naturally faster than that of an older 

person's. With exercise the sinus node increases its rate of electrical activity to 

accelerate the heart rate. The normal fast rate that develops is called sinus tachycardia.  

 
fig.  7-3 Sinus Tachycardia with a heart rate of 111bpm 
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7.2.4 Sinus Bradycardia 

If the heart rate is less than 60bpm, Bradycardia is said to be present. This may be 

caused by increased vagal or parasympathetic tone or occur in the acute stages of 

myocardial infarction.  

 
fig.  7-4 Sinus Bradycardia with a heart rate of 48bpm 

7.2.5 Atrial Rhythms 

Atrial rhythms result from irregular electrical activity in the atria of the heart. 

Some of these are described below. 

i. Premature Atrial Contractions (PACs) 

PACs are a type of arrhythmia which starts in the upper two chambers of the 

heart, also called atria. These aren't serious, and they frequently go away on their own. 

They are produced when an Atrial focus develops and fires before sinus beat is 

expected as shown below. This causes the P-wave to have a contour slightly different 

from sinus beats and the PR interval is prolonged. The QRS complex is narrow 

(<0.10s) and is similar to normal beats except for the timing. 

 
fig.  7-5 PAC 

ii. Wandering Atrial Pacemaker (WAP) 

If the contour or the shape of the P-waves in the ECG changes from beat to beat in 

a single lead often in association with variations in PP, PR and RR intervals it means 

that the site of Atrial depolarization is changing and the situation is termed as WAP. 
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fig.  7-6 WAP 

iii. Multifocal Atrial tachycardia (MAT) 

During MAT, impulses generate irregularly and rapidly at different points in atria 

causing P-wave contours, PR intervals, PP and thus RR intervals all to vary. It is 

usually associated with severe pulmonary disease.  

 
fig.  7-7 MAT 

iv. Paroxysmal Supraventricular/Atrial tachycardia (SVT/PAT) 

SVT or PAT results from impulses that recycle repeatedly in and near AV node 

due to slowing in area of unidirectional block with an atrial rate of 160-220 per 

minute. This is caused by the presence of a unidirectional blockage in the AV node. P 

waves are often regular and inverted with a QRS complex that can either be regular or 

irregular.  

 
fig.  7-8 SVT 

v. Atrial flutter 

During atrial flutter impulse travels in a circular course in the atria, setting up a 

regular, rapid (200-300 per minute) flutter (F) waves without any isoelectric baseline. 

It is caused by the presence of some degree of AV block.  

  
fig.  7-9 Atrial Flutter 
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vi. Atrial fibrillation (Afib) 

During Atrial Fibrillation impulses take chaotic, random pathways in the atria, 

resulting in no organized electrical activity and no pumping action in the atria. The 

baseline in the ECG with Afib is coarsely or finely irregular with irregular QRS 

complexes and no P-waves.  

  
fig.  7-10 Atrial Fibrillation 

7.2.6 Ventricular Rhythms 

i. Premature Ventricular Contractions (PVC) 

PVC is caused generation of an electric impulse within the ventricles before the 

sinus beat is expected. There is no P-wave associated with it and the QRS complex is 

wider than normal.   

 
fig.  7-11 PVC 

ii. Accelerated idioventricular rhythm (AIVR) 

AIVR is characterized by wide QRS complexes (>0.1s) and an absence of normal, 

upright P-waves related to QRS complexes. It is usually asymptomatic and with no 

progression to VT or Vfib.  

 
fig.  7-12 AIVR 

iii. Ventricular tachycardia (VT) 

VT is characterized by Wide QRS complexes (>0.10s), no P-wave and a high heart 

rate. A possible cause of VT is Myocardial Infarction as slowed conduction in the 
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margin of ischemic area permits circular course of impulse and reentry with repetitive 

depolarization. 

 
fig.  7-13 VT 

iv. Ventricular fibrillation (Vfib) 

Vfib may be associated with either coarse or fine chaotic modulations of the ECG 

baseline, but no true QRS complexes and indeterminate heart rate.  

 

 
fig.  7-14 Vfib 

v. Paced Rhythm 

Paced rhythm is caused by an artifical pacemaker which sends out an impulse into 

the ventricles of the heart. It is characterized by wide QRS complexes and no P-wave. 

 
fig.  7-15 Paced Rhythm 

7.2.7 Wolff-Parkinson-White (Pre-excitation) syndrome 

In this syndrome impulses originating at the SA node preexcite the peripheral 

conduction system and ventricular muscle via bundle of Kent without delay at the AV 

node, thus producing an early slurred upstroke (the delta wave) of the QRS Complex. 

Impulses can also pass via posterior accessory bundle. QRS is prolonged as the 

impulse after delay through the AV node also arrives.  
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fig.  7-16 WPW Syndrome 

7.2.8 Junctional rhythm 

In junctional rhythm impulses originate in the AV-Node with retrograde and 

antegrade transmission. P-waves are often inverted and may be buried in QRS or 

follow narrower than normal QRS complexes at slow heart rates.  

 
fig.  7-17 Junctional Rhythm 

7.2.9 Escape Beats 

Escape beats result when an electric impulse is not produced or not conducted 

from the SA node.  

 
fig.  7-18 Escape Beats 

7.2.10 Bundle Branch Blocks (BBB) 

BBB results from a blockage in the path of the electrical activity as it passes 

through the Bundle Branch. There are two types of BBB: 
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i. Left BBB (LBBB) 

LBBB is caused by a block of the left anterior or posterior fascicles or the left 

main bundle branch. It causes ST depression in leads I, aVL, V5 and V6 while 

producing wide QRS complexes (>0.12s).  

 

 
fig.  7-19 LBBB 

ii. Right BBB (RBBB) 

RBBB is caused by a blockage in the right bundle branch and it causes QRS to be 

prolonged (>0.12s), terminal broad S wave in lead I and RSR’ complex in lead V1.  

 
fig.  7-20 RBBB 

7.2.11 Other Types 

Other types include (heart) AV blocks, Junctional premature beats etc.  
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7.3 Literature Review 

Major difficulties in the classification of cardiac rhythms include the presence of 

noise in the ECG signal and the large variations within each rhythm class due to 

person specific parameters in case of some of the rhythms.  

Many researches have been conducted to explore effective signal analysis 

techniques for the classification of cardiac rhythms. There are primarily two 

components of such a computer aided diagnosis system i.e. Feature Extraction and 

Classification. A variety of feature extraction techniques exist in the literature for beat 

classification which can broadly be classified in terms of Time Domain Features, 

Frequency Domain Features, Time-Frequency (Wavelet) and Filter Banks, Blind 

Source Separation (BSS) and Independent Component Analysis, Higher Order 

Statistics, Hermite Basis, Phase Space Reconstruction and nonlinear dynamical 

modeling etc. For the purpose of classification efforts have been devoted to the 

development of classifier for these feature sets including Linear Discrimination, 

Neural Networks, Support Vector Machines, Fuzzy and Neuro-Fuzzy Expert Systems 

and Ensemble based Techniques. In this section we present a short review of some of 

the different methodologies in the literature for the purpose of beat classification in 

the ECG. However a discrete comparison of different techniques in the literature is 

not possible to the variations in the types of cardiac rhythms considered and the 

evaluation of the presented techniques on different number of subjects from different 

datasets.  

Moraes et al. [55] have proposed an unsupervised method for the classification of 

different type of QRS Complexes through the extraction of 4 time domain features, 

i.e. width, total sum of areas under the positive and negative curves, total sum of the 

absolute value of the sample variations and total amplitude. These features are 

classified with the use of a Mahalanobis distance based classifier which calculates the 

distance Mahalanobis distance between its feature set and centroids of all existing 

classes to determine the class label. A new class is added if this distance exceeds a 

predefined distance threshold. This method achieves a Sensitivity (Se) /Positive 

Predictivity Value (PPV) of 90.74%/96.55%. Another time domain based technique 

for the classification of cardiac rhythms has been presented by De Chazal et al. [56] 

which is aimed at the classification of Normal, PVC and Fusion Beats. This method 

uses a variety of features derived from the RR interval and the presence, interval, 
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magnitude and area of P, QRS complex and T-waves of both leads in recordings of 

the MITBIH Database [3] for a single beat. These features are classified using Linear 

Discriminants and Neural Networks with an accuracy of 89.1%. Time domain 

features, although simple to calculate suffer from the presence of noise and errors in 

determining the onset and offset of the QRS complex which need to be approximated 

based on the location of the R-wave. Moreover these features may not be able to 

provide very good seperability among different types of QRS complexes due to the 

presence of large within-class variations. 

Minami et al. [57] have proposed the use of Fourier Transform (FT) based Frequency 

Domain techniques for the classification of Supraventricular Rhythm, Ventricular 

Rhythm including VT and PVC, and Vfib. A QRS complex window of length 256ms 

of each beat is Fourier transformed and its power spectrum is computed after the 

application of hamming window to suppress discontinuities due to the adjacent T-

wave and P-wave. Five spectral components with central frequencies of 3.9, 7.8, 11.7, 

15.6 and 19.5Hz (shown below for different rhythms) were fed into a Neural Network 

Classifier. This method achieves a Se/PPV of ~98%.  

 
fig.  7-21 Using Fourier Transform Based Features for Classification 

A related technique is the use of filter banks for the classification of QRS complexes 

as given by Alfonso et al. [58]. Frequency based techniques for the classification of 

cardiac rhythms offer more promising prospects as they are more robust to noise in 

comparison to time domain techniques and present a more effective model of the QRS 

complex. However, the use of time-frequency decomposition of the ECG signal using 

the wavelet transform offers a better alternative than the application of Fourier 

transform for beat classification due to the non-stationary nature of the ECG signal. A 

comparative study involving the use of Fourier Transform and the Wavelet Transform 

(WT) has been carried out by Dokur et al. [59] which demonstrates the efficacy of the 

use of WT as it provides a higher classification accuracy for ten types of beats from 

the MIT-BIH database in comparison to FT. Another method that uses the wavelet 

transform for beat classification is given by Al-Fahoum et al. [60] which extracts six 
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energy descriptors from the wavelet coefficients over a single beat interval from the 

ECG signal. These features are classified using a Radial Basis Function (RBF) Neural 

Network. This method achieves an accuracy of 97.5% with the use of Daubechies 

wavelet transform. Another method utilizing the wavelet transform for the detection 

of Vfib has been proposed by Addison et al. [61]. Another approach employing 

Wavelet Transform for Beat Classification has been formulated by Prasad et al. [62] 

which uses sym6 wavelets for classifying 12 different types of beats in the MIT-BIH 

database with a reported accuracy of 96.77% through a Neural Network Classifier. 

Inan et al. [63] have presented a method for the classification of PVCs using wavelet 

transform coupled with a neural network classifier achieving an accuracy of over 95% 

on 40 files of the MIT-BIH. Yu et al. [64] have presented a beat classification 

technique that extracts features from the wavelet decomposition sub-bands and 

applies a probabilistic neural network for classification of 6 types of beats from the 

MIT-BIH achieving accuracy greater than 99%. Enign [65] has used autoregressive 

(AR) model coefficients; higher-order cumulant and wavelet transform variances as 

features with a neuro-fuzzy classifier achieving an accuracy of 98% while classifying 

4 types of beats over the MIT-BIH database. Güler et al. [66] have proposed a mixture 

of experts approach to discriminate five different types of beats employing wavelet 

transform coefficients and lyapunov exponents of the ECG as features and have 

achieved an accuracy of ~98%. Another technique proposed by Güler et al. [67] uses 

statistical features such as mean of the absolute values of the coefficients in each sub-

band, Average power of the wavelet coefficients in each sub-band, standard deviation 

of the coefficients in each sub-band and the ratio of the absolute mean values of 

adjacent sub-bands extracted from the Wavelet Decomposition of the ECG signal 

with a cascaded neural network architecture for classification. This method has 

achieved an accuracy of ~97% in classifying four types of ECG beats (Normal, 

Congestive Heart Failure, VT, Afib) from the MIT-BIH database. Exarchos et al. [68] 

have utilized a rule mining approach for the classification of heart rhythms by 

developing a fuzzy inference system with an accuracy of 96% in discriminating 4 

types of beats (VF, PVC, 2nd degree heart block, and normal) in the MIT-BIH 

utilizing time domain features for each beat. This method provides a promising 

classifying technique as it removes a discrepancy of the neural network approaches by 

providing an easy to understand rule base for classification and has the potential to be 

extended further through the combination of frequency or wavelet domain features 
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and lead specific rules. A method based on the use of independent component analysis 

(ICA) has been proposed by Yu et al. [69] which uses 27 features for the classification 

of 6 types of beats over the MIT-BIH database with an accuracy of over 99%. ICA 

also presents an effective approach to the classification of cardiac rhythms as it 

separates out different basic components of the rhythms of the heart which can then 

be classified and discriminated to recognize these rhythms.  

In this work, we have implemented the approach given by Yu et al. [64] as it provides 

an efficient and simple technique for classification of 6 types of beats in the ECG 

using features derived from the wavelet transform. This technique is described in the 

next section. 

7.4 Implemented Technique 

The adopted technique is able to classify the input beats into one of the six classes, 

i.e., Normal (N), Left Bundle Branch Block (LBBB), Right Bundle Branch Block 

(RBBB), Premature Ventricular Contraction (PVC), Atrial Premature Beat (APB) and 

Paced Beat (PB). For the purpose of this study 23 ECG records were selected from the 

MIT-BIH database for analysis and recognition. For the purpose of conformity, 

signals recorded with the MLII lead were used. The originality of the ECG beats is 

listed in the table below. 
Table  7-1 The Data Set Used for Beat Classification 

 
The steps involved in this technique are shown below: 

 
fig.  7-22 Steps Involved in DWT Based Beat Classification 
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Each of these steps is explained in detail below. 

7.4.1 QRS Segmentation 

Since the QRS complex is one of the most important ECG components in the sense 

that it is associated with electrical ventricular activation, QRS complexes were 

extracted. Based on the R-peak position identified in the associated MIT-BIH 

database annotation file, 64 point QRS segments centered at R-peaks were extracted 

from the record. The R-peak was taken to be the center of the 64 point window. The 

DC value of each 64 point ST-segment is removed. 

7.4.2 Wavelet Transform 

Due to the short length of the QRS segments, only two-level DWT is used with the 

haar wavelet. The two-level DWT (shown below) decomposes each QRS signal into 

three sets of wavelet coefficients, D1, D2 and A2. These sets of coefficients are shown 

in the figure below.  

 
fig.  7-23 Mallat's Algortihm for DWT 
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fig.  7-24 Wavelet Decomposition of an ECG Signal 
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7.4.3 Feature Extraction 

Next, statistical features are extracted from the wavelet coefficients computed 

earlier. These features are divided into two feature sets FS1 and FS2. FS1 comprises 

of the following: 

AC power of the original signal, i.e. variance of the original QRS complex signal 

denoted by 2
Sσ . This feature measures the power in the original QRS complex signal.  

AC power of the wavelet coefficients in each sub-band denoted by 2
2Aσ , 2

2Dσ  and 2
1Dσ . 

This feature measures the power in each of the sub-bands. 

AC power of the autocorrelation function of the wavelet coefficients in each sub-band 

denoted by 2
( 2)R Aσ , 2

( 2)R Dσ  and 2
( 1)R Dσ . This is a measure of the coherence in the sub-

bands.  

Ratio of the minimum to the maximum of the wavelet coefficient in each sub-band 

denoted by 2Ar , 2Dr  and 1Dr . These features represent the morphological 

characteristics of the sub-band coefficients.  

The AC power of a signal, x with length N, is calculated by finding its variance as 

follows,  

 ( ) 22

1

1 N

x
n

x n x
N

σ
=

= −⎡ ⎤⎣ ⎦∑  (7.1) 

The autocorrelation function is considered to be a measure of similarity between a 

signal ( )x n  and its shifted version. Mathematically,  

 ( ) ( ) ( )
1N k

xx
n i

R l x n x n l
− −

=

= −∑  (7.2) 

Where l is the time shift index, i=l, k=0 for 0l ≥  and i=0, k=l for 0l ≤ . The AC 

power of the autocorrelation function is calculated by determining the variance of the 

autocorrelation function.  

The ratio of the minimum to the maximum value of a signal is given by,  

 
( )( )
( )( )

min
maxx

x n
r

x n
=  (7.3) 

These features are computed for each of the sub-band or the original signal as 

described earlier to form FS1, which for a single QRS complex can be expressed as, 

{ }2 2 2 2 2 2 2
2 ( 2) 2 2 ( 2) 2 1 ( 1) 1, , , , , , , , ,S A R A A D R D D D R D Dr r rσ σ σ σ σ σ σ . FS2 combines all features in FS1 
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(explained above) and the instantaneous RR interval. Thus FS2 is given by the set 

{ }2 2 2 2 2 2 2
2 ( 2) 2 2 ( 2) 2 1 ( 1) 1, , , , , , , , , ,S A R A A D R D D D R D Dr r r RRσ σ σ σ σ σ σ .  

7.4.4 Normalization 

As the quantities of the features can be quite different, a normalization process is 

necessary to standardize all the features to the same level. The relation used for 

normalization is defined as follows: 

 ' tansig
j

ij j
ij

x

x x
x

σ

⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (7.4) 

where ijx is the jth component of the ith feature vector, with jx  and 
jxσ being the mean 

and variance of the the jth component of the ith feature vector computed over the 

training set and used throughout the computation. The application of the tangent 

sigmoid function normalizes the range of features to [-1, 1]. The normalized features 

for some selected beats of different types are shown in the figure below.  

 
fig.  7-25 Normalized Features for Selected Beats of Different Types 

7.4.5 Classification 

For the purpose of classification the following classifiers were used: 

i. LVQ Neural Network 
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The LVQ neural network was used with 200 hidden neurons.  

ii. Probabilistic Neural Network (PNN) 

PNN with smoothing factors of 0.1 and 0.02 was used.  

iii. k-Nearest Neighbor Classifier (k-NN) 

k-NN with k=1 was used. 

The performance of these classifiers was evaluated using both the feature sets, FS1 

and FS2.  

7.5 Results and Discussion 

Below we present the results of beat classification with both FS1 and FS2 through 

LVQ, PNN and k-NN classifiers. This clearly demonstrates the effectiveness of using 

RR interval features in beat classification. The best reported results are a classification 

accuracy of 99.65% with FS2 using PNN (smoothing factor of 0.1). The best results 

that we have obtained through our implementation exhibit a beat classification 

accuracy of 99.1% with FS2 with k-NN classifier (k=1).  
 

Table  7-2 Result with FS1 using LVQ 

LVQ (Training Beats: 1450, Testing Beats: 11600) using Fs1 with 200 hidden neurons 

Beat Types N LBBB RBBB PVC PAC PB 
N 2794 44 585 0 190 0 

LBBB 1 1753 37 83 528 1 
RBBB 61 230 2042 0 42 40 
PVC 0 364 39 561 31 204 
PAC 0 2 123 0 688 0 
PB 5 139 77 77 0 859 

Accuracy (%) 97.6582 69.2338 70.3410 77.8086 46.5179 77.8080
Net Accuracy (%) 74.9741 
 
 

Table  7-3 Result with FS1 using PNN 

PNN (Training Beats: 1933, Testing Beats: 11600) using Fs1 with Smoothing factor = 
0.02 

Beat Types N LBBB RBBB PVC PAC PB 
N 3568 0 13 0 16 0 

LBBB 3 2286 31 29 25 1 
RBBB 2 24 2342 6 9 2 
PVC 8 63 22 1031 2 22 
PAC 1 14 18 1 815 0 
PB 0 3 27 19 0 1197 

Accuracy (%) 99.6092 95.6485 95.4749 94.9355 94.0023 97.9542
Net Accuracy 

(%) 
96.8879 
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Table  7-4 Result with FS1 using k-NN 

k-NN (Training Beats: 11600, Testing Beats: 11600) using Fs1 with k = 1 

Beat Types N LBBB RBBB PVC PAC PB 
N 3611 0 8 0 9 0 

LBBB 1 2326 15 28 28 4 
RBBB 6 7 2384 5 4 1 
PVC 0 32 12 1052 0 11 
PAC 3 17 13 3 761 0 
PB 0 5 4 11 0 1239 

Accuracy (%) 99.7238 97.4445 97.8654 95.7234 94.8878 98.7251
Net Accuracy 

(%) 
98.0431 

Table  7-5 Result with FS2 using LVQ 

LVq (Training Beats: 1450, Testing Beats: 11600) using Fs2 with 200 hidden neurons 

Beat Types N LBBB RBBB PVC PAC PB 
N 2848 11 560 0 252 0 

LBBB 1 2107 116 7 146 34 
RBBB 57 43 2223 0 78 13 
PVC 0 131 11 858 128 2 
PAC 0 2 122 0 667 0 
PB 4 183 69 9 0 918 

Accuracy (%) 97.8694 85.0626 71.6866 98.1693 52.4784 94.9328
Net Accuracy 

(%) 
82.9397 

Table  7-6 Result with FS2 using PNN (spread = 0.1) 

PNN (Training Beats: 1450, Testing Beats: 11600) using Fs2 with Smoothing factor = 0.1 

Beat Types N LBBB RBBB PVC PAC PB 
N 3580 2 27 0 9 0 

LBBB 8 2298 34 20 11 5 
RBBB 36 17 2349 1 11 9 
PVC 0 15 2 1121 5 2 
PAC 0 3 5 1 848 0 
PB 0 1 15 10 0 1155 

Accuracy (%) 98.7859 98.3733 96.5872 97.2246 95.9276 98.6336
Net Accuracy 

(%) 
97.8534 

Table  7-7 Result with FS2 using PNN (spread = 0.02) 

PNN (Training Beats: 1450, Testing Beats: 11600) using Fs2 with Smoothing factor = 
0.02 

Beat Types N LBBB RBBB PVC PAC PB 
N 3546 0 18 0 11 0 

LBBB 11 2308 37 34 13 2 
RBBB 9 19 2359 1 8 4 
PVC 8 14 3 1150 0 4 
PAC 2 4 3 10 850 0 
PB 0 6 15 12 0 1139 

Accuracy (%) 99.1611 98.1710 96.8789 95.2775 96.3719 99.1297
Net Accuracy 

(%) 
97.8621 
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Table  7-8 Result with FS2 using k-NN (Best Results) 

k-NN (Training Beats: 11600, Testing Beats: 11600) using Fs2 with k = 1 

Beat Types N LBBB RBBB PVC PAC PB 
N 3538 0 13 0 2 0 

LBBB 0 2404 18 18 4 3 
RBBB 2 9 2390 0 3 1 
PVC 0 10 3 1129 1 0 
PAC 1 4 1 0 838 0 
PB 0 1 2 8 0 1197 

Accuracy (%) 99.9153 99.0115 98.4755 97.7489 98.8208 99.6669
Net Accuracy 

(%) 
99.1034 

7.6 Evaluation Using DFT 

In order to illustrate the effectiveness of the use of DWT instead of the DFT, we 

adopted a similar approach for the classification of different beats which is shown in 

the figure below.  

ECG
Beats QRS Extraction Fourier

Transform

Feature
Extraction Normalization Classification Beat

Labels
 

fig.  7-26 Steps in DFT Based Disease Classification 

In this method we take the N-point DFT using FFT and compute the amplitude of the 

Fourier Coefficients thus obtained. These coefficients are normalized in the same way 

as in the DWT based method. These features are shown below. 

 
fig.  7-27 Normalized 32 point DFT Features 

 For classification, we employ a k-NN with k=1. Results of evaluation of this method 

using N=16 and N=32 both with and without Heart Rate are shown below. 
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Table  7-9 Result with 16 point DFT Features 

k-NN* (Training Beats: 11600, Testing Beats: 11600) with k = 1  
Beat Types N LBBB RBBB PVC PAC PB 

N 3180 102 165 5 46 71 
LBBB 190 1852 17 209 4 119 
RBBB 269 24 1561 26 352 201 
PVC 12 227 30 764 3 113 
PAC 61 3 382 8 307 96 
PB 105 185 222 139 86 484 

Accuracy (%) 83.3115 78.0447 65.6710 66.3771 38.4712 44.6494 
Net Accuracy (%) 70.2414 

Table  7-10 Result with 16 point DFT and Instantaneous Heart Rate Features 

k-NN* (Training Beats: 11600, Testing Beats: 11600) with k = 1 
Beat Types N LBBB RBBB PVC PAC PB 

N 3464 47 78 4 4 44 
LBBB 52 2159 19 23 2 85 
RBBB 142 19 2150 7 71 76 
PVC 4 17 10 1078 12 3 
PAC 13 2 68 4 708 9 
PB 86 90 84 0 11 955 

Accuracy (%) 92.1032 92.5021 89.2487 96.5950 87.6238 81.4846 
Net Accuracy (%) 90.6379 

Table  7-11 Result with 32 point DFT Features 

k-NN* (Training Beats: 11600, Testing Beats: 11600) with k = 1 
Beat Types N LBBB RBBB PVC PAC PB 

N 3609 4 3 1 8 8 
LBBB 4 2300 3 34 20 1 
RBBB 3 5 2343 13 17 4 
PVC 4 29 6 1147 6 1 
PAC 35 10 28 1 766 0 
PB 11 0 2 0 1 1173 

Accuracy (%) 98.4452 97.9557 98.2390 95.9030 93.6430 98.8203 
Net Accuracy (%) 97.7414 
Table  7-12 Result with 32 point DFT and Instantaneous Heart Rate Features (Best Results with 

DFT) 

k-NN* (Training Beats: 11600, Testing Beats: 11600) with k = 1 
Beat Types N LBBB RBBB PVC PAC PB 

N 3546 0 2 0 4 3 
LBBB 8 2388 9 13 9 1 
RBBB 10 5 2389 7 5 2 
PVC 0 8 2 1103 10 0 
PAC 25 7 5 1 821 0 
PB 1 2 1 0 0 1213 

Accuracy (%) 98.7744 99.0871 99.2110 98.1317 96.7020 99.5078 
Net Accuracy (%) 98.7931 
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The results obtained above (98.7931%) compare well with the best results obtained 

with DWT (99.1034%) but the number of features being used for the DWT is only 11 

whereas DFT requires 33 features. These features can also be reduced through 

different pruning techniques [59]. Other studies [70] also demonstrate the 

effectiveness of the use of DWT over that of DFT in beat classification. This stems 

from the fact that DWT is able to handle non-stationary signals like the ECG in a 

much better way than DFT. 
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CHAPTER 8 
DETECTION OF ISCHEMIC ST SEGMENT 

DEVIATIONS 

ST Segment elevation and depression in the ECG form a basis for the diagnosis of 

Coronary Heart Disease (CHD). In this chapter we describe the causes and 

mechanism of developing CHD and its relation with the ECG along with a detailed 

description of the techniques present in the literature for the automatic detection of 

Myocardial Ischemia. We also render the methodologies implemented under this 

project for the detection of ST level changes in the ECG, which can used in the 

diagnosis of CHD, along with their results.  

8.1 Introduction to CHD 

Coronary heart disease (CHD) [71], also called Coronary Artery Disease (CAD), 

ischaemic heart disease (IHD), Atherosclerotic heart disease, is the end result of the 

accumulation of atheromatous plaques within the walls of the arteries that supply the 

myocardium (the muscle of the heart) with oxygen and nutrients. While the symptoms 

and signs of coronary heart disease are noted in the advanced state of disease, most 

individuals with coronary heart disease show no evidence of disease for decades as 

the disease progresses before the first onset of symptoms, often a "sudden" heart 

attack, finally arise. After decades of progression, some of these atheromatous plaques 

may rupture and (along with the activation of the blood clotting system) start limiting 

blood flow to the heart muscle. The disease is the most common cause of sudden 

death, and is also the most common reason for death of men and women over 20 years 

of age. According to present trends in the United States, half of healthy 40-year-old 

males will develop CHD in the future, and one in three healthy 40-year-old women. 

According to the Guinness Book of Records, Northern Ireland is the country with the 

most occurrences of CHD. 

Atherosclerotic heart disease can be thought of as a wide spectrum of disease of the 

heart. At one end of the spectrum is the asymptomatic individual with atheromatous 
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streaks within the walls of the coronary arteries (the arteries of the heart). These 

streaks represent the early stage of atherosclerotic heart disease and do not obstruct 

the flow of blood. A coronary angiogram performed during this stage of disease may 

not show any evidence of coronary artery disease, because the lumen of the coronary 

artery has not decreased in calibre. 

Over a period of many years, these streaks increase in thickness. While the 

atheromatous plaques initially expand into the walls of the arteries, eventually they 

will expand into the lumen of the vessel, affecting the flow of blood through the 

arteries. While it was originally believed that the growth of atheromatous plaques was 

a slow, gradual process, recent evidence suggests that the gradual buildup may be 

complemented by small plaque ruptures which cause the sudden increase in the 

plaque burden due to accumulation of thrombus material. 

 
fig.  8-1 Intravascular ultrasound image of a coronary artery (left), with color coding on the right, 
delineating the lumen (yellow), external elastic membrane (blue) and the atherosclerotic plaque 

burden (green). As the plaque burden increases, the lumen size will decrease [71]. 

Atheromatous plaques that cause obstruction of less than 70 percent of the diameter of 

the vessel rarely cause symptoms of obstructive coronary artery disease. As the 

plaques grow in thickness and obstruct more than 70 percent of the diameter of the 

vessel, the individual develops symptoms of obstructive coronary artery disease. At 

this stage of the disease process, the patient can be said to have ischemic heart 

disease. The symptoms of ischemic heart disease are often first noted during times of 

increased workload of the heart. For instance, the first symptoms include exertional 

angina or decreased exercise tolerance. 

As the degree of coronary artery disease progresses, there may be near-complete 

obstruction of the lumen of the coronary artery, severely restricting the flow of 

oxygen-carrying blood to the myocardium. Individuals with this degree of coronary 

heart disease typically have suffered from one or more myocardial infarctions (heart 
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attacks), and may have signs and symptoms of chronic coronary ischemia, including 

symptoms of angina at rest and flash pulmonary edema. 

A distinction should be made between myocardial ischemia and myocardial 

infarction. Ischemia means that the amount of oxygen supplied to the tissue is 

inadequate to supply the needs of the tissue. When the myocardium becomes 

ischemic, it does not function optimally. When large areas of the myocardium become 

ischemic, there can be impairment in the relaxation and contraction of the 

myocardium which causes the variation in the ST level and T-wave in the ECG. If the 

blood flow to the tissue is improved, myocardial ischemia can be reversed. Infarction 

means that the tissue has undergone irreversible death due to lack of sufficient 

oxygen-rich blood. 

An individual may develop a rupture of an atheromatous plaque at any stage of the 

spectrum of coronary heart disease. The acute rupture of a plaque may lead to an 

acute myocardial infarction (heart attack). 

8.2 Stages of Development of IHD 

Insufficient blood supply to the myocardium can result in myocardial ischemia, 

injury or infarction, or all three. Atherosclerosis of the larger coronary arteries is the 

most common anatomic condition to diminish coronary blood flow. The branches of 

coronary arteries arising from the aortic root are distributed on the epicardial surface 

of the heart. These in turn provide intramural branches that supply the cardiac muscle. 

Myocardial ischemia generally appears first and is more extensive in the sub-

endocardial region since these deeper myocardial layers are farthest from the blood 

supply, with greater intramural tension and need for oxygen.  

8.2.1 Subendocardial ischemia 

Ischemia in this area prolongs local recovery time. Since repolarization normally 

proceeds in an epicardial-to-endocardial direction, delayed recovery in the 

subendocardial region due to ischemia does not reverse the direction of repolarization 

but merely lengthens it. This generally results in a prolonged QT interval or increased 
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amplitude of the T wave or both as recorded by the electrodes overlying the 

subendocardial ischemic region. 

8.2.2 Subepicardial or transmural ischemia 

Transmural ischemia is said to exist when ischemia extends subepicardially. This 

process has a more visible effect on recovery of subepicardial cells compared with 

subendocardial cells. Recovery is more delayed in the subepicardial layers, and the 

subendocardial muscle fibers seem to recover first. Repolarization is endocardial-to-

epicardial, resulting in inversion of the T waves in leads overlying the ischemic 

regions. 

8.2.3 Injury 

Injury to the myocardial cells results when the ischemic process is more severe. 

Subendocardial injury on a surface ECG is manifested by ST segment depression, and 

subepicardial or transmural injury is manifested as ST segment elevation. In patients 

with coronary artery disease, ischemia, injury and myocardial infarction of different 

areas frequently coexist, producing mixed and complex ECG patterns. 

8.2.4 Myocardial infarction 

The term infarction describes necrosis or death of myocardial cells. 

Atherosclerotic heart disease is the most common underlying cause of myocardial 

infarction. The left ventricle is the predominant site for infarction; however, right 

ventricular infarction occasionally coexists with infarction of the inferior wall of the 

left ventricle. The appearance of pathological Q waves is the most characteristic ECG 

finding of transmural myocardial infarction of the left ventricle. A pathological Q 

wave is defined as an initial downward deflection of a duration of 40 msec or more in 

any lead except III and aVR. The Q wave appears when the infarcted muscle is 

electrically inert and the loss of forces normally generated by the infarcted area leaves 

unbalanced forces of variable magnitude in the opposite direction from the remote 

region, for example, an opposite wall. These forces can be represented by a vector 

directed away from the site of infarction and seen as a negative wave (Q wave) by 

electrodes overlying the infarcted region. 
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During acute myocardial infarction, the central area of necrosis is generally 

surrounded by an area of injury, which in turn is surrounded by an area of ischemia. 

Thus, various stages of myocardial damage can coexist. The distinction between 

ischemia and necrosis is whether the phenomenon is reversible. Transient myocardial 

ischemia that produces T wave, and sometimes ST segment abnormalities, can be 

reversible without producing permanent damage and is not accompanied by serum 

enzyme elevation. Two types of myocardial infarction can be observed 

electrocardiographically: 

Q wave infarction, which is diagnosed by the presence of pathological Q waves 

and is also called transmural infarction. However, transmural infarction is not always 

present, hence the term Q-wave infarction may be preferable for ECG description 

Non-Q wave infarction, which is diagnosed in the presence of ST depression and 

T wave abnormalities. 

Elevation of serum enzymes is expected in both types of infarction. In the absence 

of enzyme elevation, ST and T wave abnormalities are interpreted as due to injury or 

ischemia rather than infarction. 

8.3 Site of infarction 

The ECG has been used to localize the site of ischemia and infarction. Some leads 

depict certain areas; the location of the infarct can be detected fairly accurately from 

analysis of the 12-lead ECG. Leads that best detect changes in commonly described 

locations are classified as follows: 

• Inferior (or diaphragmatic) wall: II, II and aVF 

• Septal: V1 and V2 

• Anteroseptal: V1, V2, Vf3 and sometimes V4 

• Anterior: V3, V4 and sometimes V2 

• Apical: V3, V4 or both 

• Lateral: I, aVL, V5 and V6 

• Extensive anterior: I, aVL and V1 through V6 

These details are also shown in the table below. 
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Table  8-1 Localization of Myocardial Infarction [72] 

 

 
fig.  8-2 ST and T Wave Deviation in Ischemia 

Posterior wall infarction does not produce Q wave abnormalities in conventional leads 

and is diagnosed in the presence of tall R waves in V1 and V2. The classic changes of 

necrosis (Q waves), injury (ST elevation), and ischemia (T wave inversion) may all be 

seen during acute infarction. In recovery, the ST segment is the earliest change that 

normalizes, then the T wave; the Q wave usually persists. Therefore, the age of the 

infarction can be roughly estimated from the appearance of the ST segment and T 

wave. The presence of the Q wave in the absence of ST and T wave abnormality 

generally indicates prior or healed infarction. Although the presence of a Q wave with 

a 40 msec duration is sufficient for diagnosis, criteria defining the abnormal depth of 

Q waves in various leads have been established. For example, in lead I, the abnormal 

Q wave must be more than 10 percent of QRS amplitude. In leads II and aVF, it 

should exceed 25 percent, and in aVL it should equal 50 percent of R wave amplitude. 

Q waves in V2 through V6 are considered abnormal if greater than 25 percent of R 

wave amplitude. fig.  8-2 shows the effects of various stages of IHD on the ECG. 



 132

8.4 Cause of ST Deviation in IHD patients 

Under normal conditions, the ST segment is relatively isoelectric (i.e., flat along 

the baseline), because all healthy myocardial cells attain about the same potential 

during repolarization. Ischemia has complex time-dependent effects on the electrical 

properties of the affected myocardial cells. Severe, acute ischemia lowers the resting 

membrane potential, shortens the duration of the action potential, and changes the 

shape of the plateau (phase 2) of the action potential in the ischemic area. These 

changes cause a voltage gradient between normal and ischemic zones, leading to 

current flow between these regions during both systolic and diastolic portions of the 

cardiac cycle. These so-called currents of injury are represented on the surface ECG 

by deviation of the ST segment. The injury current can thus be thought to originate as 

the result of depolarization of the cellular resting membrane potential due to ischemia 

which causes a potential difference to develop between the normal and ischemic 

tissue producing the resultant current [73]. According to current-of-injury theory, ST-

segment elevation occurs when the injured muscle is located between normal muscle 

and the corresponding precordial electrode. On the other hand, ST-segment 

depression occurs when normal muscle is located between the injured tissue and the 

corresponding electrode.  

Other causes of ST segment elevation, apart from IHD, include the following: 

• Acute pericarditis: ST elevation in acute pericarditis is generally diffuse 

and does not follow the pattern of blood supply. As a rule these changes 

are not accompanied by reciprocal depression of the ST segment in other 

leads. 

• Early repolarization: In some patients without known heart disease, 

particularly young patients, early takeoff of the ST segment may be seen. 

• Ventricular aneurysm: After acute myocardial infarction, the ST segment 

usually normalizes. However, in the presence of a persistent aneurysm in 

the region of infarction, ST segment elevation may persist indefinitely. 

Abnormal T waves can be seen in a variety of conditions other than myocardial 

ischemia, including: 
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• Hyperventilation 

• Cerebrovascular disease 

• Mitral valve prolapse 

• Right or left ventricular hypertrophy 

• Conduction abnormalities (right or left bundle branch block) 

• Ventricular preexcitation 

• Myocarditis 

• Electrolyte imbalance 

• Cardioactive drugs such as digitalis and antiarrhythmic agents 

• No obvious cause, particularly in women 

8.5 Standard Datasets and Evaluation Methods 

Standard datasets for the detection of ischemia include the European Society of 

Cardiology Database (ESC-ST-T DB) and the Long term ST database (LTST DB). 

These databases are available at physiobank.  

Ischemia detection techniques either focus on the detection of ischemic beats or on 

the detection of ischemic episodes. The accuracy of the former methods is given by 

the classification accuracy whereas the latter methods use sensitivity, TP/(TP+FN), 

and positive predictive values ,TP/(TP+FP), for presenting the accuracy with TP, FN 

and FP representing number of True-Positive, False-Negative and False Positive 

episodes. A distinction of average and gross statistics must also be made. Aggregate 

gross statistics weights each event (episode) equally by pooling all the events over all 

records together, and models how the system behaves on a large number of events. 

Aggregate average statistics weights each record equally, and models how the system 

behaves on randomly chosen records. All techniques for ischemic episode detection 

implemented in this work use the 48 freely available files of the ESC-ST-T database 

and use aggregate gross statistics.  

8.6 Literature Review  

A variety of techniques exist in the literature for the detection of myocardial 

ischemia and ST segment change episodes. These include the use of Time Domain 
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Approaches, Artificial Neural Networks, Principal Component Analysis, Wavelet 

Transform, Fuzzy and Neuro-Fuzzy Systems etc.  

Maglaveras et al. (1998) [74] have presented a 3 layer adaptive Backpropagation 

Neural Network for detection of Ischemic episodes and achieve Sensitivity/PPV of 

88.62%/78.38% for episode detection using Average statistics and 85%/68.69% using 

gross statistics using the ESC-ST-T Database. The neural net operates on an estimate 

of the baseline corrected ST segment taken to start 40ms after the R-peak with 

duration of 160ms which is down-sampled by a factor of two for further processing as 

a means of dimensionality reduction. The neural net is trained on the deviation of the 

ST segment estimate from a normal template.  

Jager  et al. (1998) [75] have presented a technique based on the use of lead 

independent KLT components for the detection of ST-segment episodes and with a 

Sensitivity/PPV of 87.1%/87.7%(average), 85.2%/86.2%(gross) over the ESC-ST-T 

database. Principal Component Bases are obtained by first dividing the input database 

into a number of pattern classes and then applying KLT. 

Frenkel et al. (1999) [76] have proposed an Artificial Neural Network based 

Approach for ST-T segment classification with Sensitivity/PPV of 84.15%/72.63%.  

Garcia et al. (2000) [77] propose a method based which uses a detection algorithm to 

the filtered root mean square (RMS) series of differences between the beat segment 

(ST segment or ST-T complex) and an average pattern segment. This method gives a 

(average) sensitivity/PPV of 85%/86% and 85%/76%, for ST segment deviations and 

ST-T complex changes respectively over the ESC-ST-T Database. An evaluation of 

this method on the LTST  [78] gives Sensitivity/PPV of 75%/71%. 

Papaloukas et al. (2000) [19] proposed A knowledge based approach for ischemia 

detection through application rules employing evaluation of ST Segment level and 

slope along with T wave polarity. This paper does not describe results on the whole of 

ESC-ST-T Database. It presents a simple and effective method for the removal of 

baseline variations without introducing significant distortion in the ST Segment. 

Papaloukas et al. (2002) [79] have proposed a technique for the detection of 

myocardial ischemia using a Neural Network trained using Bayesian Regularization 

method. The proposed system uses a 400ms long estimate of the ST Segment. Lead 

independent principal components (5) of the ST segment estimates are obtained for 

the entire database and used for dimensionality reduction. This method gives a 
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Sensitivity/PPV of 90%/89% for aggregate gross statistics and 86%/87% for average 

statistics using ESC-ST-T Database. 

Bezerianos et al. (2001) [80] propose a Network Self Organizing Map (NetSOM) 

model for the detection of ST-T episodes. The Sensitivity/PPV of ischemic beats for 

this method over the ESC-ST-T database is given as 77.7%/74.1%. 

Papadimitriou et al. (2001) [81] have reported a episode detection Sensitivity/PPV of 

82.8%/82.4% over the ESC-ST-T database through the use of a supervising network 

self-organizing map with SVM using an RBF kernel. 

Papaloukas et al. (2001) [82] present a rule based approach for ST Segment and T-

wave abnormality detection using the J+60/80ms (dependent upon heart rate) point as 

an estimate of the ST segment and application of rules over the slope and level of the 

ST-segment and T-wave followed by window characterization for episode detection. 

The accuracies presented in the paper in terms of Sensitivity/PPV for ST Segment 

deviation and T-wave episode detection is 92.02%/93.77% and 91.09%/80.09% on 

the ESC-ST-T database respectively.  

Zimmerman et al. (2003) [83] propose a reconstructed phase space approach for 

distinguishing Ischemic from Nonischemic ST changes through Gaussian Mixture 

Models. The Sensitivity/Specificity of this method is given as 81%/88.1% over the 

LTST Database.   

Langley et al. (2003) [84] use ST Segment Deviations and their Principal Components 

for detection of ischemic ST episodes. The Sensitivity/Specificity of this technique is 

given as 99%/88.8% with an accuracy of 91.1% over the LTST Database. 

Zimmerman (2004) [85] has improved the method proposed by Langley et al. to give 

an accuracy of 94.80% over the LTST database using Support Vector Machine 

classifier coupled with the original method.  

Smrdel et al. (2004) [86] use ST deviation time series for the detection of ST 

episodes. The presented Sensitivity/PPV of this method over ESC-ST-T database is 

81.3%/89.2%.  

An ischemia detection method using Genetic Algorithms and Multicriterion Decision 

Analysis has been proposed by Goletsis et al. (2004) [87].  This method uses ST 

deviation defined at  the J+60/80ms point, ST Segment slope, T-wave amplitude, T-

wave normal amplitude and polarity and age. The Sensitivity/Specificity of this 

algorithm for ischemic beat classification over ESC-ST-T Database is 91%/91%. 
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A technique using Nonlinear PCA Neural Networks for Ischemia Detection was 

proposed by Stamkopoulos et al. (2004) [88] giving correct classification rate of 

approximately 80% for the normal beats and higher than 90% for the ischemic beat 

for ST segment deviations on ESC-ST-T Database. Moreover [89] conjectures that 

linear dimensionality reduction methods, e.g. Linear PCA can perform better in 

comparison to Nonlinear techniques on real datasets. 

Another method using PCA and Artificial Neural Networks for episode detection is 

given by Tasoulis et al. (2004) [90] which gives an episode detection accuracy of 

80.4% over the ESC-ST-T Database.  

A Hidden Markov Model (HMM) based approach has been proposed by Andreao et 

al. (2004) [91] which gives a Sensitivity/PPV of 83%/85% over 48 files out of 90 

from the ESC-ST-T Database.  

A real time Ischemia detection system is presented in the paper by Pang et al. (2005) 

[92] which employs a real time R peak detector and combined time domain and KLT 

features along with an adaptive neuro-fuzzy system for classification. This method 

achieves Sensitivity/PPV of 81.29%/74.65% over ESC-ST-T database. 

Sales et al. (2005) [93] present an implementation of an ischemia detection system 

using wavelets along with its evaluation on a limited number of subjects of LTST. 

A method that uses decision trees for detection of ischemia was proposed by Dranca 

et al. (2006) [94] and it has achieved a Sensitivity/PPV of 89.89%/70.03% over the 

LTST database. 

Exarchos et al. (2006) [95] have proposed a method using a rule mining approach for 

ischemia detection. This method uses ECG features such as ST Segment Deviation, 

slope, area, T-wave deviation (from normal template) amplitude along with patient’s 

age. This method then uses specially mined rules for detection of ischemia. The 

Sensitivity/Specificity of this method for ischemic beat classification over the ESC 

ST-T database is 87%/93%.  

Exarchos et al. (2007) [68] give a fuzzy expert system based technique for ischaemic 

beat classification that relies on the extraction and application of fuzzy rules and 

optimization of membership functions parameters. The ischemic beat detection 

accuracy of this method is given by a Sensitivity/Specificity of 91%/92%.  
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Table  8-2 Results of Literature Survey 

Reference Year Accuracy Assessment Detection Type 

ESC-ST-T DB Cardiologists 1992 Se=70-83% PPV=85-93%  

Maglaveras et al. 1998 SeA = 88.6% PPVA =78.4% Ischemic Episodes  

  SeG = 85.0% PPVG =68.7% Ischemic Episodes 

Jager et al.  1998 SeA = 87.1% PPVA =87.7% ST Segment Episodes  

  SeG = 85.2% PPVG =86.2% ST Segment Episodes 

Frenkel et al.  1999 Se=84.2% PPV=72.6% ST Segment Episodes 

Garcia et al.  2000 SeA = 85.0% PPVA =86.0% ST Segment Episodes  

  SeG = 85.0% PPVG =76.0% Ischemic Episodes 

Papaloukas et al. 2001 SeA = 86.0% PPVA =87.0% Ischemic Episodes 

  SeG = 90.0% PPVG =89.0% Ischemic Episodes  

Vladutu et al.  2001 Se=77.7% PPV=74.1% Ischemic Episodes  

Papadimitriou et al. 2001 Se=82.8% PPV=82.4% Ischemic Episodes  

Papaloukas et al. 2002 Se=92.1% PPV=93.8% ST Segment Episodes  

  Se=91.1% PPV=80.1% T Wave Episodes 

Smrdel et al. 2004 Se=81.3% PPV=89.2% ST Segment Episodes 

Goletsis et al. 2004 Se=91.0% Sp=91.0% Ischemic Beats 

Andreao et al.*  2004 Se=83.0% PPV=85.0% ST Segment Episodes 

Pang et al.  2005 Se=81.3% PPV=74.6%  Ischemia Episode 

Exarchos et al.  2006 Se=87.0% Sp=93.0% Ischemic Beats 

Exarchos et al.  2007 Se=91.0% Sp=92.0% Ischemic Beats 

8.7 Implemented Schemes 

Automated ST Deviation Episode Detection is based upon the following major 

steps as shown below. : 

• Preprocessing 

• Feature Extraction 

• Classification 

• Post Processing 

 
fig.  8-3 Steps Involved in ST Segment Deviation Episode Detection 

These steps are explained in detail henceforth. 

8.7.1 Preprocessing 

Preprocessing involves the removal of noise and baseline artifacts from the input 

ECG signal. It also includes the detection of the QRS reference points for the 
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extraction of features for ST segment deviation detection, which appears as the next 

stage in the system. Here we describe, in detail, the preprocessing stage for use with 

the consequent stages. 

[ ]x n

[ ]px n

[ ]Bx nb
on
b
fiducial

b
off

qrs

qrs

qrs

 
fig.  8-4 Preprocessing for ST Segment Deviation Episode Detection 

A given input ECG signal [ ]x n , 1n N= L  with a sampling frequency of sf (250Hz 

for ESC-ST-T Database) belonging to lead l  is taken as input and is passed through a 

pre-filtering stage which is responsible for the removal of high frequency noise and 

minimization of effects of baseline variation. This is done by passing [ ]x n  through 

the cascade of a high pass and a low pass filter to obtain [ ]px n . A 6th order 

Butterworth IIR high pass filter with cutoff frequencies of 0.6passf Hz=  and 

0.4stopf Hz=  for the pass and stop bands respectively is employed through zero-phase 

(forward-backward) filtering to reduce the effects of baseline variation which lies up 

to ~0.5Hz while minimizing distortion in the ST segment. Effects of high frequency 

noise are reduced by the use of zero-phase filtering through a 12th order Butterworth 

IIR low pass filter with a cutoff frequency of 45cf Hz= . 

The pre-filtered signal [ ]px n  is subjected to QRS detection using a Genetic Algorithm 

Optimized Wavelet Transform based QRS Detection and delineation system [96] that 

gives a triple { }, ,b b b
on fiducial offqrs qrs qrs  corresponding to the onset, fiducial point and 

offset for each beat 1 bb N= L (number of beats).  

The QRS delineation information and the pre-filtered signal [ ]px n  is used for baseline 

removal using a two stage linear interpolation based technique proposed in [19] to 

obtain the baseline removed signal [ ]Bx n . For the Rule Based Technique described 

below, a cubic spline based baseline removal technique (see chapter 3) was used with 

the knot amplitude being defined through averaging the signal values lying between 

[ 40 , 4 ]b b
on onqrs ms qrs ms− +  and the knot position to be defined at b

onqrs  for each beat. 

These baseline removal methodologies works in conjunction with the High Pass Filter 
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used during pre-filtering to remove baseline variations while introducing minimum 

distortion in the ST Segment. This baseline removed ECG signal is used in 

subsequent processing.  

8.7.2 Feature Extraction and Classification 

The following schemes were implemented for detection of feature extraction: 

• Using Time Domain Features 

• Using KLT Features  

Below we describe in details these approaches.  

8.7.2.1 Using Time Domain Features and a Rule Based Classifier 

This method originally proposed by Papaloukas et al. [82] requires the extraction 

of the following features for each beat in the input signal. 

a. Isoelectric Level 

The isoelectric level defined for the knot in the cubic spline interpolation based 

baseline removal procedure by averaging signal values in the range 

[ 40 , 4 ]b b
on onqrs ms qrs ms− +  is used. This isoelectric level was removed through the 

baseline removal procedure.  

b. ST Reference Point (J80 or J60) Amplitude 

The ST deviation is measured at the J80 (heart rate < 120bpm) or the J60 point 

(heart rate ≥  120bpm). The J point amplitude used is the averaged amplitude in 

the interval [J-4ms, J + 4ms]. Similarly, for the J80 (or J60) point, the interval 

[J80+4 ms, J80- 4 ms] (or [J60+4ms, J60-4ms]) is applied.  

c. ST Reference Amplitude for a Subject 

The average of the ST point amplitudes of the first 50 beats is used as a 

reference level for each subject and subtracted from the rest of the ST point 

amplitudes. 

d. ST Point (J80 or J60) Slope 
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The ST slope is defined as the slope of the line connecting the J and J80 (or 

J60) points. 

e. T-peak Amplitude 

T wave detection is carried out prior to the extraction of these features through the 

DWT based approach described in Chapter-6 and the peak T-wave amplitude is 

determined. If the T-wave detection methodology fails, an estimate of the T-wave 

peak amplitude is obtained by finding the amplitude of the point that has 

maximum variation in amplitude from the J80 point in a 350ms window starting at 

the J80 point.  

The beat classification was based on the following rules (see figure below):  

a. Negative ST deviation: ≤ 0.8 mm (0.08mV) below the isoelectric line and 

with a slope ≥ 65° from the vertical line, or in other words with signal slope 

at the ST segment ≤ 1.87 mV ms-1) 

b. Positive ST deviation: ≥ 0.8 mm (0.08mV) above the isoelectric line 

 
fig.  8-5 Rules for ST Segment Deviation Detection 

The figure below shows the ST deviation plot along with the associated thresholds 

for two different subjects of the ESC-ST-T Database.  
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fig.  8-6 ST Segment profiles for two selected ESC DB Subjects 

8.7.2.2 Using KLT Features 

In this method we use lead specific Principal Component Analysis for the 

detection of ST Segment episodes as shown below.  

[ ]Bx n [ ]ˆb
STx m [ ]b

STx m [ ]b
STy q [ ]b

ST ly q

 
fig.  8-7 Feature Extraction using KLT 
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An estimate of the ST Segment, [ ]ˆ ,  1b
STx m m M= L  taken to start at  b

offqrs  and 

ending at 100b
offqrs ms+  is extracted for each beat from the baseline removed signal. 

Isoelectric level is then estimated by finding the average value of the flattest 20ms 

long region starting 80ms before b
onqrs and ending at b

onqrs  for each beat.  This value 

for each beat is subtracted from the corresponding [ ]ˆb
STx m  to obtain a more precise 

estimate of the true ST deviation [ ]b
STx m .  
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fig.  8-8 Normal and Elevated ST Segments for lead MLIII 

The ST deviation estimate [ ]b
STx m  is projected onto lead-specific Karhunen-Loève 

Transform (KLT) bases q
lΦ , 1...( 5)q Q= =  to obtain the principal coefficients 

[ ]b
STy q corresponding to ST deviation for each beat. These bases are obtained by 

selecting a subset of ST segments of non-noisy beats for the lead l  using the manual 

noise level annotations in the database and finding the Eigen Vectors and Eigen 

values corresponding to the Covariance (or dispersion) matrix lR  formed by these 

non-noisy beat ST segments. The covariance matrix is given by,  

 ( )( )
1

1
l
t

t t

t

N Tn n
l ST l ST ll

nt

R x x
N

μ μ
=

= − −∑  (8.1) 

Where il
tN  is the number of ST segments chosen (randomly) from the non-noisy beats 

for il for determining the KLT  bases  and [ ]
il

mμ  is the mean of these beats given by, 
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The Eigen values and vectors are obtained by solving the Eigen value problem,  

 , 1q q q
l l l lR q MλΦ = Φ = L  (8.3) 

The Eigen values q
lλ  are sorted in descending order 1 2 M

l l lλ λ λ≥ ≥ ≥K  and the 

highest 5Q =  out of M are taken as they contribute the maximum variance (energy) 

[40].  

The bases corresponding to different leads are different as is illustrated in the figure 

below. 

 
fig.  8-9 KLT Bases for Different leads 

Let lΦ  be the matrix of the Eigen vectors as given below, 

 1 2 Q
l l l l⎡ ⎤Φ = Φ Φ Φ⎣ ⎦L  (8.4) 

This matrix is used to obtain b
STy  for each beat as follows, 

 ( )b T b
ST l ST ly x μ= Φ −  (8.5) 

 
The reconstruction of the ST segment deviation of a beat is given by, 

 
1

[ ]
Q

b b q
ST ST l l

q
x y q μ

=

⎛ ⎞
= Φ +⎜ ⎟
⎝ ⎠
∑%  (8.6) 

This reconstruction is used to find the normalized reconstruction error as follows,  
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This normalized reconstruction error is used to detect noisy beats. ST segments 

having ( ) 0.3r b >  are taken as noisy and rejected in further processing [40].  
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fig.  8-10 A reduced Feature Space showing discrimination between normal and abnormal ST 

Segments 

Four different types of classifiers were used for solving the classification problem. 

These techniques are described below in detail. 

a. Using Feed-Forward Backpropagation Neural Network 

In this method a single Backpropagation Neural Network was used for the 

detection of ST deviation in the ECG. The non noisy ST deviations  [ ]b
ST ly q  

( )1l lq Q= L with 1 nnbb N= L (number of non noisy beats) and lQ  being the number 

of principal components used in classification of ST episodes for lead l  are applied at 

the input of a  Neural Network. The output of the neural networks for a beat is given 

by ( )z b . A moving average filter of length 40L =  is applied (through zero phase 

filtering) on all of ( )z b  to obtain ( )fz b  to introduce temporal linking in the output of 

the neural network. Thresholding is then performed on ( )fz b  as below, 
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1  ( )

( ) 1  ( )
0

l

lk

if fz b
t b if fz b

else
+

+

−

⎧ > Θ
⎪= − ≤ Θ⎨
⎪
⎩

 (8.8) 

Thus ( ) 1t b =  implies that the Neural Network classifier has conjectured the input ST 

segment as a ( )ST +  segment. ( ) 0t b =  implies that this classifier has classified the 

input ST segment as a non-deviated ST segment. Similarly ( ) 1t b = −  labels the input 

ST segment as a depressed ST segment. The thresholds l
+Θ  and l

−Θ  are lead specific 

and are given in the table below. This method was utilized for the detection of ST 

segment deviation only in the MLIII lead before moving on to the more effective 

method of using a Neural Network Ensemble for classification, which is described in 

the next section.  
Table  8-3 Parameters for NN Based Classification 

Lead 

( )l  
( )lQ  

Bases 

( )lS  

NN Structure 
( )l

+Θ  

+ST Threshold 

( )l
−Θ  

-ST Threshold 
MLIII 5 12,12,1 0.65 0.7 

 

For each lead a training set of approximately equal number of ST deviated (if present) 

and normal beats is selected (<6% of total number of beats for that lead). The training 

class labels are taken as tC  with, 

 ( )
+

-

1 for ST
-1 for ST     
0 else          

tC b
⎧
⎪= ⎨
⎪
⎩

 (8.9) 

Some of these beats form the cross validation set over which different parameters of 

this system, such as the neural network architecture and different thresholds used are 

optimized empirically. Tangent sigmoid activation functions were used throughout in 

the design of all neural networks for all layers. 

b. Using Neural Network Ensemble 

In this method we used an ensemble of neural networks with k-fold training and 

majority voting for classification as shown below. 
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fig.  8-11 Use of NN Ensemble for Classification 

The non noisy ST deviations  [ ]b
ST ly q  ( )1l lq Q= L with 1 nnbb N= L (number of non 

noisy beats) and lQ  being the number of principal components used in classification 

of ST episodes for lead l  are applied at the input of two sets of Neural Networks, one 

each for the detection of ST elevation ( )ST +  (having lK +  neural networks) and ST 

depression ( )ST − episodes (having lK −  neural networks). The output of these neural 

networks for a beat is given by ( ),  1 lk
z b k K+

+ += K  and ( ),  1 lk
z b k K−

− −= K . A 

moving average filter of length 40L =  is applied (through zero phase filtering) on all 

of ( )
k

z b+  and ( )
k

z b−  to obtain ( )
k

fz b+  and ( )
k

fz b−  to introduce temporal linking in 

the output of the neural networks. Thresholding is then performed on each of ( )
k

fz b+  

and ( )
k

fz b−  as below, 
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 (8.11) 

Thus ( ) 1
k

t b+ =  implies that the Neural Network classifier number k +  has conjectured 

the input ST segment as a ( )ST +  segment. ( ) 0
k

t b+ =  implies that this classifier has 

classified the input ST segment as a non-elevated ST segment. Similarly ( )
k

t b−  labels 

the input ST segment as depressed or non-depressed ST segments. The thresholds l
+Θ  

and l
−Θ  are lead specific and are given in table below. Majority voting is then used to 

combine the results of different Neural Network based Classifiers for detecting ST 

elevation vs. non-elevated ST segments and ST depressions vs. non-depressed ST 

segments. For a given beat, ( )v b+ is taken as the label for which maximum number of 
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classifiers, out of the lK +  classifiers used for discerning ST elevations and normal ST 

segments, has voted. Similarly ( )v b− is taken as the label for which maximum 

number of classifiers, out of the lK −  classifiers used for classifying ST depressions 

and normal ST segments, has voted.  

The training of these neural networks is carried out using k-fold training [97] (see fig. 

below). For each lead a training set of approximately equal number of ST elevated (if 

present) and normal beats is selected (<6% of total number of beats for that lead) and 

k-fold training is used to train lK +  back propagation neural networks each having . 

The training class labels are taken as ( )tC b+  with, 

 ( )
+1 for ST     

0 else          tC b+ ⎧
= ⎨
⎩

 (8.12) 

Some of these beats form the cross validation set over which different parameters of 

this system, such as the neural network architecture and different thresholds used are 

optimized empirically.  

 
fig.  8-12 k-fold Training [97] 

The same holds for the set of Neural Network detecting ST depressions where we 

train the neural networks with equal number of ST depressed (if present) and normal 

beats and class labels given by  

 ( )
-1 for ST     

0 else          tC b− ⎧
= ⎨
⎩

 (8.13) 
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The structure of each of the Neural Network for a lead is taken to be the same for a 

lead and is represented by lS  as given in the table below.  Tangent sigmoid activation 

functions were used throughout in the design of all neural networks for all layers.  
Table  8-4 Lead Specific Paramters for NN Ensemble 

Lead 

( )l  
( )lK +  ( )lK −  ( )lQ  

Bases 

( )lS  

NN 
Structure 

( )l
+Θ  

+ST Threshold 

( )l
−Θ  

-ST Threshold 

MLI 5 5 5 10,12,1 0.65 0.7 
MLIII 5 5 5 10,12,1 0.65 0.7 
D3 5 0 5 10,12,1 0.725 -NA- 
V1 5 5 5 8,8,1 0.8 0.825 
V2 5 5 5 8,8,1 0.8 0.8 
V3 0 5 5 8,8,1 -NA- 0.785 
V4 5 5 5 8,8,1 0.8 0.8 
V5 7 7 5 10,12,1 0.8 0.725 

 

c. Using SVM Ensemble 

In this method we investigated the use of a SVM Ensemble classifier for detecting 

ST segment elevation and depression. The method adopted is much the same as for 

the Neural Network Ensemble. The training patterns were selected in the same 

manner as for the Neural Network Ensemble except that the labels are taken as 

follows, 

 ( )
+1 for ST     

1 else          tC b+ ⎧
= ⎨

−⎩
 (8.14) 

 ( )
-1 for ST     

1 else          tC b− ⎧
= ⎨

−⎩
 (8.15) 

The structure of the classification system is shown below.  

( )
k

t b+ ( )v b+

( )
k

z b−

( )
k

fz b+

( )
k

fz b− ( )v b−( )
k

t b−

( )
k

z b+

1 lk K+ += K

1 lk K− −= K

 
fig.  8-13 SVM Ensemble for Classification 

The details of the number of SVM classifiers used and their structure is given below. 

SVM Ensemble based classification has been implemented only for leads MLI and 

MLIII.  
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Table  8-5 Lead Specific Paramters for SVM Ensemble 

Lead 

( )l  
( )lK +

 ( )lK −
 ( )lQ  

Bases 

Value of C 
for SVM 
Classifiers 
 

Kernel ( )l
+Θ  

+ST  
Threshold 

( )l
−Θ  

-ST  
Threshold 

MLI 5 5 5 10-7 RBF (Spread = 1.1) 0 0 
MLIII 5 5 5 10-7 RBF (Spread = 1.1) 0 0 

8.7.3 Post Processing 

This procedure takes the outputs of the classifier for a number ( )episodeN  of beats 

and acknowledges it as an ST deviation episode if a certain percentage ( )minP  of these 

beats has are labeled as showing ST deviations. Episodes smaller then a specific 

length ( )minL  are removed and episodes that are spaced by a normal duration less than 

( )minD  are combined. The output of the window characterization stage is taken as 

( )C b . ( ) 1C b =  employs that the beat has been labeled as ST depressed or elevated, 

otherwise it is taken to be normal. These values were tuned empirically using a cross 

validation dataset for different classification systems explained earlier and are given 

in the table below. It should be noted that episode annotations for the two separate 

leads of the ECG are not combined as a practical implementation of the system may 

involve the use of only a single ECG lead.  
Table  8-6 Postprocessing Parameters for different Classifiers 

CLASSIFIER/PARAMETERS 
episodeN  minP  minL  minD  

Using Rule Based Classifier 15 60 30 50 

Using KLT Features (BPNN, NN Ensemble, SVM 

Ensemble) 

35 75 15 40 

8.8 Results 

Here we describe the results for all the above techniques.  

8.8.1 Rule Based Technique 

This method gives a Sensitivity/PPV of 85%/82% over 48 subjects of the ESC-

ST-T Database for ST segment deviation episode detection. These results are 

considerably lower than those reported (92.1%/93.8%) by the original author. The 
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major issue with the use of this method is the presence of noise and its sensitivity to 

the accuracy of the baseline removal or isoelectric level detection procedure.  

8.8.2 Using KLT Features with BPNN 

With the use of the BPNN approach over the MLIII lead we achieved a 

Sensitivity/PPV of 96%/81% for the detection of ST segment episodes in the ESC-

ST-T Database. These results demonstrate the effectiveness of the use of BPNN for 

classification of ST segment deviation episodes. This method was then extended to 

the use of NN ensemble. 

8.8.3 Using NN Ensemble 

The results for ST deviation episode detection using this method are shown in the 

figure below for lead MLIII.  

 
fig.  8-14 Episode Detection using NN Ensemble 

The results for each lead are given below in terms of Sensitivity/PPV.  
Table  8-7 Results with NN Ensemble 

 Lead  

( )l  
Number Of 
ST Episodes 

TP FP FN PPV 
(%) 

Se 
(%) 

MLI 6 6 0 0 100 100 
MLIII 45 40 3 5 93.02 88.89 
D3 2 2 0 0 100 100 
V1 9 9 1 0 90 100 
V2 10 10 2 0 83.3 100 
V3 4 4 0 0 100 100 
V4 44 39 3 5 92.86 88.64 
V5 53 47 10 6 82.46 88.68 
ALL 173 157 19 16 89.20 90.75 
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These results rank amongst the best reported in the literature and they clearly 

demonstrate the effectiveness of the use of a NN ensemble for detecting ST segment 

episodes.  

8.8.4 Using SVM Ensemble 

The results of the use of SVM based ensemble over MLI and MLIII are shown 

below. 
Table  8-8 Results with NN Ensemble 

Lead  

( )l  
Number Of 
ST Episodes 

TP FP FN PPV 
(%) 

Se 
(%) 

MLI 6 5 0 1 100 83.3 
MLIII 45 36 4 9 90 80 
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CHAPTER 9 
CONCLUSIONS AND FUTURE WORK 

This work was aimed at the design of a decision support system for cardiac 

diseases with a particular focus on the design and implementation of algorithms for 

removal of artifacts from the ECG, ECG Segmentation, Arrhythmia classification and 

detection of ischemic ST segment deviation episodes. In this chapter we present our 

conclusions about different techniques implemented in this work along with issues 

related to system integration and development of system hardware. Different pointers 

to future research are also given along with a projection of the direction of future 

work for practical system development.  

The ECG signal obtained from the ECG machine is prone to a variety of artifacts 

which can stem from different physiological and electrical components. These include 

Noise (Electromyographic, Electrical Interferences etc.) and Baseline variations. 

These artifacts can reduce the performance of the overall system thus making their 

removal an integral system component. We have implemented different methods for 

the removal of baseline variations from the ECG. These methods include the use of 

IIR and FIR high pass filters with a cutoff frequency of ~0.5Hz, curve fitting 

techniques such as Cubic Spline Interpolation, Median Filtering and a Two Stage 

Linear Interpolator. The desired characteristics for such a system include 

minimization of the distortion introduced into the ECG while effectively 

compensating for possibly large baseline variations. We conclude that these 

characteristics are achieved through the cascade implementation of a Zero Phase IIR 

low pass filter and the two stage linear interpolator. This procedure introduces the 

minimum amount of distortion especially in the highly sensitive region of the ST 

segment.  

For the purpose of noise removal we have implemented different noise removal 

techniques based on the use of digital filters, Independent Component Analysis and 

locally projective principal component based nonlinear filtering. These techniques 

were evaluated on ECG generated synthetically by using a dynamical model for ECG 

generation and adding noise to it. This noise was removed using the implemented 
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techniques and parameters like Noise Reduction Factor and Correlation Coefficient 

were used to assess the quality of the noise removal procedure. We conclude that 

nonlinear noise filtering performs more effectively in removing noise that is 

orthogonal to the ECG signal (such as electrical interferences and a great deal of 

Electromyographic noise) as it offers a higher noise reduction factor. Due to the great 

computational complexity of this noise removal technique, a noise detection 

mechanism based on the thresholding of the PCA reconstruction error can be 

employed. ICA can be used to effectively compensate noise that is independent but 

not orthogonal to the ECG signal source. We have, in this work identified a number of 

difficulties and research pointers for using ICA for noise reduction which are 

described in Chapter-4. A method that combines ICA with locally projective filtering 

offers a more effective alternate to the use of noise filtering implemented in this work.  

A fundamental component of any ECG based analysis and decision support system is 

Segmentation of the ECG signal into its constituent parts, i.e. QRS Complex, P and T-

waves. For the purpose of QRS detection and delineation we have implemented 

methods based upon the use of Length Transform and the classical Pan-Tompkins 

Algorithm. However these method though giving very high detection accuracy 

(>99.9% over the QT-Database) do not give good results in terms of the error in 

detecting the onset and offset of the QRS complex. We have implemented an existing 

Discrete Wavelet Transform (DWT) based approach and optimized its parameters in a 

novel way through the use of Genetic Algorithms to achieve a Detection 

Sensitivity/Specificity of ~99.1% with a 10ms error in marking the onset and offset of 

the QRS complex. This method though having very low delineation error has much 

lower detection accuracy. We have implemented a novel Continuous Wavelet 

Transform (CWT) based technique for the detection and delineation of the QRS 

complex which gives a detection Sensitivity/Specificity of ~99.8% with ~10-12ms 

error in marking the onset and offset of the QRS complex. Moreover the CWT 

approach is more effective in terms of execution time than the DWT based approach. 

However the DWT coefficients extracted in the DWT based technique can also be 

used for the detection and delineation of the P and T-waves which makes it more 

effective in overall in terms of execution time. The delineation accuracy given above 

has been determined through comparison with manually annotated beats through 

expert cardiologists. Further improvement in these values can cause the system to be 
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over trained to the annotations as there always exists an inter-person variation in the 

markings of the onset and offset. 

For the purpose of arrhythmia classification, we have compared the performance of 

approaches based on the DWT and DFT over the classification of six types of heart 

rhythms (Normal, Atrial Premature Beat, Ventricular Premature Contraction, Paced 

Rhythms, Left and Right Bundle Branch Blocks) from the MIT-BIH Arrhythmia 

Database. We conclude that DWT based features used in this work along with the 

Instantaneous Heart Rate perform better than the use of DFT based approaches as the 

former offer a high classification accuracy of ~99.1 with a k-NN classifier with the 

latter giving a comparable accuracy of ~98.9% but using three times more features. A 

possible candidate for future work is the use of Fuzzy Expert Systems for Arrhythmia 

classification with rules obtained from data through Evolutionary Algorithms which 

can improve the interpretability of the classification procedure along with allowing 

potential for reduction in the number of features required. From a practical system 

implementation perspective DFT may offer a computationally more efficient method 

due to the existence of high speed DFT hardware, but it may require the number of 

features to be reduced through the use of feature reduction or selection techniques 

such as Davies-Bouldin Index.  

We have also implemented different approaches for ischemic ST Segment deviation 

episode detection such as the use of a Rule Based Classifier with Time Domain 

Features and the application of novel lead independent Karhunen-Loeve Transform 

(KLT) bases with a variety of classifiers (Backpropagation Neural Networks, Support 

Vector Machines and Neural Network Ensemble). We have evaluated the 

performance of our techniques over the ESC-ST-T database and conclude that the use 

of lead specific KLT features with a Neural Network Ensemble classifier offer much 

higher episode detection accuracy (Sensitivity/Positive Predictive Value of ~90%).  

We can also apply automatic fuzzy rule extraction techniques from data and use the 

consequent fuzzy inference system for classification.  

The integrated system design obtained through this research is shown below: 

 
fig.  9-1 Proposed Systm Design 



 155

The implemented techniques for the base for the purpose of practical system 

development, which requires the integration of these modules and parameter tuning in 

the system to customize this system for operation with the ECG acquisition device 

and the environment in which it is to operate. Two types of practical system 

implementations can be envisioned: 

a. Portable Device 

A portable device can be helpful for the long term and remote monitoring of 

cardiac patients. Such a device can involve the use of a portable Holter monitor, a 

data-logging system and the developed algorithms implemented on a PDA or 

dedicated hardware. Such a system can transmit abnormalities in the ECG through 

a separate communication system or through a simple cell phone to a medical 

expert for immediate action. 

b. Non-Portable System 

Such a system can be used for the offline or online analysis of the ECG of single 

or multiple patients in hospitals and involves the interfacing of an ECG machine 

to a laptop through specially designed interface ADC cards.  

The approaches implemented in this thesis can thus offer a promising automated 

patient monitoring system which can be helpful both to the cardiac expert and the 

patient. It can result in improvement of the life style of a cardiac patient by allowing 

him more freedom in activities. It can also make the life of a cardiac expert easier by 

presenting automatically calculated ECG parameters and decision support. 
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