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Example 11-12: Derivative Property
Suppose that we want to find the Fourier transform of the derivative of the signal in Example 11-11; i.e.,
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One approach would be to differentiate the signal and then determine the Fourier transform of the result. Using the
product rule, the derivative is

y(t) = e 28(t —3) — 2e 2 'u(t —3)
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Using results from Example 11-11 on p. 11-11 and the Fourier transform of a delayed impulse from (11.76) on p. 11.76,

we obtain )
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Placing the whole expression over a common denominator gives a form that shows we could have just multiplied
X (jw) in (11.78) by (jw) since
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In other words, we would have obtained the same answer by applying the differentiation property (11.82) directly to
the result of Example 11-11. [ |
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