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Example 11-4: Transform of Impulse Train
As another example of finding the Fourier transform of a periodic signal, let us consider the periodic impulse train
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pty = Y 8t —nTy) (11.41)
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where the period is denoted by Ts. This signal, which will be useful in Chapter 12 in deriving the sampling theorem,
is plotted in Fig. 11-10(a). Because x(t) is periodic with period Ts, we can also express (11.41) as a Fourier series
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where ws = 27/ Ts. To determine the Fourier coefficients {ax}, we must evaluate the Fourier series integral over one
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Figure 11-10: Periodic impulse train: (a) Time-domain signal p(t); (b) Fourier transform P (jw). Regular spacing in
the frequency-domain isws = 27/ Tg

convenient period; i.e.,
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The Fourier coefficients for the periodic impulse train are all the same size. Now in general, the Fourier transform of
a periodic signal represented by a Fourier series as in (11.42) is of the form

P(jo) = ) 2mas(w — kos)
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Substituting (11.43) into the general expression for P(jw), we obtain
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Therefore, the Fourier transform of a periodic impulse train is also a periodic impulse train. |
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