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Example 9-15: Derivative-Integral Cascade

Consider the input and impulse response in Section 9-7.3 and plotted in Fig. 9-18 on 9-18. If we differentiate the
input and integrate the impulse response before convolution, we will achieve the same result as convolving the two
functions directly. In this case, x(f) = u(t — 1) —u(t — 2) soxV(t) = 8(t — 1) — 8(t — 2). To integrate the impulse
response, we convolve with the unit-step function and find that =" = 0 for r < 0 and
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More compactly, 1D (1) = (1 — e~")u(t). Now we compute y(¢) as follows:
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If we look closely at the last expression above, we see that
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which is identical to (9.59) in Section 9-7.3. [ |
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