

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. © 2003 Pearson Education, Inc.

Modulator system is: y(t) = p(t)x(t)Linearity: Let $y_1(t) = p(t)x_1(t)$ and $y_2(t) = p(t)x_2(t)$ Let $x(t) = \alpha x_1(t) + \beta x_2(t)$ Then y(t) = p(t)x(t) $= p(t)[\alpha x_1(t) + \beta x_2(t)]$ $= \alpha p(t)x_1(t) + \beta p(t)x_2(t)$ $= \alpha y_1(t) + \beta y_2(t)$ Thus, the modulator system is <u>linear</u>

Time-Invariance:

If p(t) is constant, the system is time-invariant
If p(t) is not constant, then there are two times
t₁ and t₂ such that
$$p(t_1) \neq p(t_2)$$
.
Let $x(t) = \delta(t_1) \delta(t-t_1)$
Then the output is $y(t) = p(t) \delta(t-t_1)$
 $= p(t_1) \delta(t-t_1)$
Now shift the input by (t_2-t_1)
 $x(t-(t_2-t_1)) = \delta(t-(t_2-t_1)-t_1) = \delta(t-t_2)$
Then the output is $y(t) = p(t) \delta(t-t_2)$
 $= p(t_2) \delta(t-t_2)$.
However, if we shift $y(t)$ by (t_2-t_1) , we get
 $y(t-(t_2-t_1)) = p(t_1) \delta(t-(t_2-t_1)-t_1)$
 $= p(t_1) \delta(t-t_2)$
These are
different, so
the system is
not time-invariant