PROBLEM:

An LTI system has the following system function:

$$H(z) = \frac{1 + z^{-2}}{1 + 0.3z^{-1}}.$$

The following questions cover most of the ways available for analyzing IIR discrete-time systems.

- (a) Plot the poles and zeros of H(z) in the z-plane.
- (b) Use z-transforms to determine the impulse response h[n] of the system; i.e., the output of the system when the input is $x[n] = \delta[n]$.
- (c) Determine an expression for the frequency response $H(e^{j\hat{\omega}})$ of the system.
- (d) Use the frequency response function to determine the output $y_1[n]$ of the system when the input is

$$x_1[n] = 2\cos(\pi n)$$
 $-\infty < n < \infty$.

(a)
$$H(3) = \frac{1+3^{-2}}{1+0.33^{-1}} = \frac{(3+j)(3-j)}{3(3+63)}$$
Poles: $P_{0}=0, P_{1}=-0.3$

S:
$$\delta_0 = j$$
, $\delta_1 = -j$
 $J_m \{\delta\}$
 $\delta_0 = j$
 $\delta_0 = j$
 $\delta_0 = j$
 $\delta_0 = 0$
 $\delta_0 = 0$

$$\begin{aligned}
h &= Z^{-1} \left\{ \frac{1+3^{-2}}{1+0.33^{-1}} \right\} \\
&= Z^{-1} \left\{ \frac{1+3^{-2}}{1+0.33^{-1}} \right\} \\
&= Z^{-1} \left\{ \frac{1}{1+0.33^{-1}} \right\} + Z^{-1} \left\{ \frac{3^{-2}}{1+0.33^{-1}} \right\} \\
&= (-0.3)^n U [n] + (-0.3)^{n-2} U [n-2]
\end{aligned}$$

(c)
$$H(e^{j\Omega}) = \frac{1 + e^{-j2\Omega}}{1 + 0.3e^{-j\Omega}}$$

(d) $|H(e^{j\pi})| = |\frac{1 + e^{-j2\pi}}{1 + 0.3e^{-j\pi}}| = |\frac{1 + 1}{1 - 0.3}| = 2^{0/4}$
 $\angle H(e^{j\pi}) = \angle \frac{1 + 1}{1 - 0.3} = 0$
 $Y_{1} \text{ In } J = 2 \cdot |H(e^{j\pi})| \cos(\pi n + \angle H(e^{j\pi}))$
 $= 2 \times \frac{20/4}{7} \cdot \cos(\pi n + 0)$
 $= \frac{40/7}{7} \cos(\pi n)$