PROBLEM:

(a) A continuous-time linear, time-invariant system has the impulse response

$$h(t) = \delta(t) + A\delta(t - \Delta).$$

Find the output of the system, y(t), when the input is $x(t) = \sin(2000\pi t)$, A = 1, and $\Delta = 2.5 \times 10^{-4}$. Express your answer as a single sinusoid.

y(t) =

(b) Now assume that the input signal is $x(t) = \sin(2000\pi t)$, i.e., that the sinusoid is now zero for t < 0. Find values for A and Δ that will permit the new output y(t) to be *exactly* three periods of a 1000Hz sine waveform and zero thereafter.

$$A =$$

$$\Delta =$$

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. © 2003 Pearson Education, Inc.

۱ | | | | | | | | | ₁ - 1 | || || ¹ + ¹ +

(a) A continuous-time linear, time-invariant system has the impulse response

$$h(t) = \delta(t) + A\delta(t - \Delta).$$

Find the output of the system, y(t), when the input is $x(t) = \sin(2000\pi t)$, A = 1, and $\Delta = 2.5 \times 10^{-4}$. Express your answer as a single sinusoid.

$$y(t) = \sin(2000\pi t) + \sin(2000\pi (t - \frac{7}{4000}))$$

= $\sin(2000\pi t) + \sin(2000\pi t - \frac{\pi}{2})$
= $\sqrt{2} \sin(2000\pi t - \frac{\pi}{4})$
 $y(t) = \sqrt{2} \sin(2000\pi t - \frac{\pi}{4})$
= $\cos(2000\pi t - \frac{\pi}{4})$

(b) Now assume that the input signal is
$$x(t) = \sin(2000\pi t)u(t)$$
, i.e., that the sinusoid is now zero for $t < 0$. Find values for A and Δ that will permit the new output $y(t)$ to be *exactly* three periods of a 1000 Hz sine waveform and zero thereafter.

3 PERIODS
$$\implies \Delta = 3\left(\frac{1}{1000}\right) = 3 \times 10^{-3}$$

A=-1 WILL MAKE THE SUM ZERO FOR $t = 3 \times 10^{-3}$
 $\Delta = 3 \times 10^{-3}$

McClellan, Schafer, and Yoder, *Signal Processing First*, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. © 2003 Pearson Education, Inc.