PROBLEM:

Given a feedback filter defined via the recursion:

$$y[n] = \frac{2}{3}y[n-1] + 6x[n]$$
 (DIFFERENCE EQUATION)

- (a) Determine the system function H(z). What are its poles and zeros?
- (b) When the input to the system is a short alternating signal:

$$x[n] = \begin{cases} (-1)^n & \text{when } n = 0, 1, 2, 3\\ 0 & \text{when } n < 0 \text{ and } n \ge 4 \end{cases}$$

determine the functional form for the output signal y[n]. Assume that the output signal y[n] is zero for n < 0. This is called the *at rest* initial condition for the difference equation. (Optional) Use the filter() function in MATLAB to check your answer.

- (c) Write a formula for the input signal x[n] as the weighted sum of four shifted impulse signals.
- (d) Explain how it is possible to use linearity to express the output as the sum of four terms, each of which is a delayed version of the impulse response of the system. Recall that the impulse response of a first-order feedback filter has the generic form: $b_0(a_1)^n$ for $n \ge 0$.

(a)
$$y[n] = \frac{2}{3}y[n-1] + 6x[n]$$
 --- IN MATLAB:
 $b = [6]$ $a = [1-\frac{2}{3}]$
 $H(z) = \frac{6}{1-\frac{2}{3}z^{-1}} = \frac{6z}{z-\frac{2}{3}}$

(b) MAKE A TABLE:

WIAKE A IABOU.			
n	x[n]	yrn7	
40	۵	0	
0	1	6	y[0]= 2/3 (0) + 6(1) = 6
1	-1	-2	y117= 2/3 (6) + 6(-1) = -2
2	1	14/3	y[2]= 3/3(-2) +6(1)= 14/3
3	-1	-26/9	y (3) = 2/3 (22/3) +6(-1) = -26/9
4	0	-52/27	y (4) = 2/3(-1%)+6(0) = -52/27
5	0	-104/81	y157= 3/3 (-2/27)+6(0)=-104/81
•		•	-

$$y[n] =
 \begin{cases}
 0 & \text{for } n < 0 \\
 6 & \text{for } n = 0 \\
 -2 & \text{for } n = 1 \\
 | 14/3 & \text{for } n = 2
 \end{cases}$$

$$\frac{-26(\frac{2}{3})^{n-3}}{9} & \text{for } n \ge 3$$

y(n) behaves like

(\frac{2}{3})^{n-3} for n=3

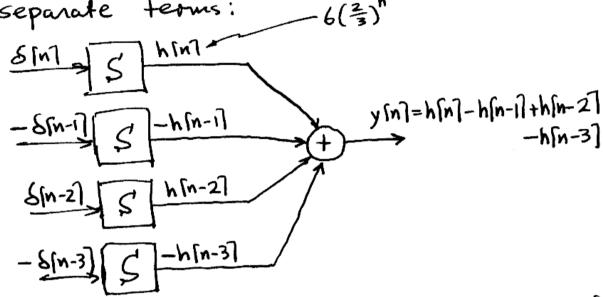
NOTE: pole is at Z=\frac{2}{3}

(d) Find the impulse response
$$h[n]$$
.
 $\frac{S(n)}{S} = \frac{S(n)}{S} = \frac{S(n)}{S} = \frac{S(n-1)}{S} = \frac{S(n-2)}{S} = \frac{S(n-3)}{S}$

Since x[n7= 6[n-1]+6[n-2]-6[n-3] we get yin7= kin7-kin-17+kin-27-hin-37 SUM OF FOUR TERMS

Prob (cont)

(d) Further explanation of "SUPERPOSITION" Since $x(n) = \delta(n) - \delta(n-1) + \delta(n-2) - \delta(n-3)$ we can construct the output as four separate terms: $-4(\frac{2}{3})^n$



To get a formula, you have to keep track of the starting points

For
$$n \ge 3$$
:
 $y(n) = 6(\frac{2}{3})^n - 6(\frac{2}{3})^{n-1} + 6(\frac{2}{3})^{n-2} - 6(\frac{2}{3})^{n-3}$
 $= [6 - 6(\frac{2}{3})^1 + 6(\frac{2}{3})^2 - 6(\frac{2}{3})^3](\frac{2}{3})^n = \frac{39}{4}(\frac{2}{3})^n$

For
$$n=2$$
 (use 3 terms)
 $y[2] = 6(\frac{2}{3})^2 - 6(\frac{2}{3})^1 + 6(\frac{2}{3})^0 = \frac{14}{3}$
For $n=1$ (use 2 terms)
 $y[1] = 6(\frac{2}{3}) - 6(\frac{2}{3})^0 = -2$

For
$$N=0$$
 (use one term)
 $y[0] = 6(\frac{2}{3})^0 = 6$