

PROBLEM:

The diagram in Figure 1 depicts a cascade connection of two linear time-invariant systems.

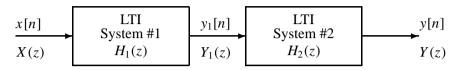


Figure 1: Cascade connection of two LTI systems.

(a) Determine the filter coefficients $\{b_k\}$ of the first system: $y_1[n] = \sum_{k=0}^{m} b_k x[n-k]$

Assume that the impulse response from the first filter is the signal $h_1[n]$ shown below:

$$\delta[n] = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-4} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}}_{-1} \longrightarrow \underbrace{ \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{f$$

State clearly the value for the order M as well as all the coefficients.

(b) Suppose that system #2 is described by the system function: $H_2(z) = \frac{10}{1 - \frac{2}{5}z^{-1}}$

Obtain the impulse response of the cascade, i.e., find y[n] when $x[n] = \delta[n]$ in Figure 1.

The diagram in Figure 1 depicts a cascade connection of two linear time-invariant systems.

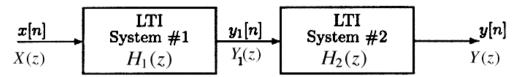
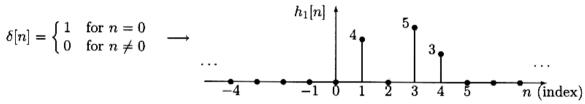


Figure 1: Cascade connection of two LTI systems.

(a) Determine the filter coefficients $\{b_k\}$ of the first system: $y_1[n] = \sum_{k=0}^{M} b_k x[n-k]$ Assume that the impulse response from the first filter is the signal $h_1[n]$ shown below:



State clearly the value for the order M as well as all the coefficients.

M=4, so length of FIR filter is 5
Since impulse response "reads out" the
$$\{b_k\}$$

we get
 $\{b_k\} = \{0,4,0,5,3\}$

(b) Suppose that system #2 is described by the system function: $H_2(z) = \frac{10}{1 - \frac{2}{5}z^{-1}}$

Obtain the impulse response of the cascade, i.e., find y[n] when $x[n] = \delta[n]$ in Figure 1.

$$H_2(z) \implies y[n] = \frac{2}{5}y[n-1] + 10y_1[n]$$
 is System #2

We already have impulse response of sys#1, so use high as input to sys #2. MAKE TABLE

					3		5	6
					5		0	0
yini	٥	٥	40	16	56.4	52.56	21.024	

for
$$n \ge 4$$
 $y[n] = 52.56 \left(\frac{2}{5}\right)^{n-4}$
for $n = 3$ $y[n] = 56.4$
 $n = 2$ $y[n] = 16$
 $n = 1$ $y[n] = 40$
 $n \le 0$ $y[n] = 0$