

PROBLEM:

Circle the correct answer to each of these short answer questions (3 pts. each):

- (a) "If $H(e^{j\hat{\omega}})$ is the frequency response of a digital filter, and the input is $x[n] = \cos(0.3\pi n)$, then the output is $y[n] = H(e^{j0.3\pi})x[n]$." This statement is
 - (a) Always true
 - (b) Sometimes true
 - (c) Never true
- (b) "If the signal x(t) is a sinusoid and its spectrum has frequency components at $f = \pm 55$ Hz, then the signal $y(t) = x^2(t)$ has frequency components at the same frequencies." This statement is:
 - (a) True
 - (b) False
- (c) A causal IIR filter with system function $H(z) = \frac{1 2z^{-1}}{1 + 0.25z^{-1}}$ is:
 - (a) not stable.
 - (b) stable
- (d) Evaluate the complex number $z = j^{-1} + j^{-2} + j^{-3}$.
 - (a) z = 0
 - (b) z = j
 - (c) z = -j
 - (d) z = 1
 - (e) z = -1
- (e) Suppose that the discrete-time signal $x[n] = \cos(0.2\pi n)$ is the input to an FIR filter whose frequency response is $H(e^{j\hat{\omega}}) = 2e^{-j2\hat{\omega}}\cos(2\hat{\omega})$. Determine the output signal, y[n].
 - (a) $y[n] = 2\cos(0.2\pi n 0.2\pi)$
 - (b) $y[n] = 2\cos(0.2\pi n 0.4\pi)$
 - (c) $y[n] = 0.618 \cos(0.2\pi n 0.4\pi)$
 - (d) $y[n] = 0.618 \cos(0.2\pi n 0.2\pi)$
 - (e) y[n] = 0

Circle the correct answer to each of these short answer questions:

(a) "If $H(e^{j\hat{\omega}})$ is the frequency response of a digital filter, and the input is $x[n] = \cos(0.3\pi n)$, then the output is $y[n] = H(e^{j0.3\pi})x[n]$." This statement is

(b) "If the signal x(t) is a sinusoid and its spectrum has frequency components at $f = \pm 55$ Hz, then the signal $y(t) = x^2(t)$ has frequency components at the same frequencies." This statement is:

$$\stackrel{(a) True}{(b)}_{False} \left(e^{j2\pi(55)t} + e^{-j2\pi(55)t} \right)^2 \rightarrow e^{j2\pi(10)t} etc.$$

- (c) An IIR filter with system function $H(z) = \frac{1 2z^{-1}}{1 + 0.25z^{-1}}$ is:
 - (a) not stable. (b) stable pole at Z=-0.25 is inside Unit circle.

(d) Evaluate the complex number $z = j^{-1} + j^{-2} + j^{-3}$.

- (a) z = 0(b) z = j(c) z = -j(d) z = 1(e) z = -1Z = -j - l + j = -1
- (e) Suppose that the discrete-time signal $x[n] = \cos(0.2\pi n)$ is the input to an FIR filter whose frequency response is $H(e^{j\hat{\omega}}) = 2e^{-j2\hat{\omega}}\cos(2\hat{\omega})$. Determine the output signal, y[n].

(a)
$$y[n] = 2\cos(0.2\pi n) (-0.2\pi)$$

(b) $y[n] = 2\cos(0.2\pi n - 0.4\pi)$
(c) $y[n] = 0.618\cos(0.2\pi n - 0.4\pi)$
(d) $y[n] = 0.618\cos(0.2\pi n) (-0.2\pi)$
(e) $y[n] = 0$
 $H(e^{j0.2\pi}) = 2e^{-j0.4\pi}\cos(0.4\pi) = 0.418e^{-j0.4\pi}$
 $y[n] = 0.618\cos(0.2\pi n - 0.4\pi)$