PROBLEM:

Pick the correct output signal and enter the number in the answer box:

Difference Equation, H(z), $H(e^{j\hat{\omega}})$, or h[n].

(a)
$$H(z) = \frac{100z^{-1} - 100}{1 - \frac{1}{3}z^{-1}}$$

with
$$x[n] = u[n]$$

ANS =

(b)
$$y[n] = \frac{1}{3}y[n-1] + 100x[n]$$

with $x[n] = \cos(0.25\pi n)$

Output Signal

- 1. $y[n] = 125 \cos(0.25\pi n 0.3)$
- 2. $y[n] = 100(\frac{1}{3})^{n-1}u[n-1]$
- 3. $y[n] = 100\delta[n-1] 100\delta[n]$
- 4. $y[n] = -100(\frac{1}{3})^n u[n]$
- 5. $y[n] = 100(-\frac{1}{3})^n u[n]$
- 6. $y[n] = 125\cos(0.25\pi n + 0.3)$

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. ⊚ 2003 Pearson Education, Inc.

SOLUTION

Pick the correct output signal and enter the number in the answer box:

Difference Equation, H(z), $H(e^{j\hat{\omega}})$, or h[n].

Output Signal

(a)
$$H(z) = \frac{100z^{-1} - 100}{1 - \frac{1}{3}z^{-1}}$$

with $x[n] = u[n]$

$$ANS = 4$$

$$Y(z) = H(z)X(z)$$

= $\frac{100(z^{-1}-1)}{1-z^{-1}} \cdot \frac{1}{1-z^{-1}}$

$$=\frac{-100}{1-\frac{1}{3}z^{-1}}$$

1.
$$y[n] = 125\cos(0.25\pi n - 0.3)$$

2.
$$y[n] = 100(\frac{1}{3})^{n-1}u[n-1]$$

3.
$$y[n] = 100\delta[n-1] - 100\delta[n]$$

4.
$$y[n] = -100(\frac{1}{2})^n u[n]$$

5.
$$y[n] = 100(-\frac{1}{3})^n u[n]$$

6.
$$y[n] = 125\cos(0.25\pi n + 0.3)$$

(b)
$$y[n] = \frac{1}{3}y[n-1] + 100x[n]$$

with $x[n] = \cos(0.25\pi n)$

$$H(z) = \frac{100}{1 - \frac{1}{3}z^{-1}}$$

Need to evaluate the frequency response at $\hat{\omega} = 0.25\pi$

$$H(e^{j\hat{\omega}})\Big|_{\hat{\omega}=0.25\pi} = \frac{100}{1-\frac{1}{3}e^{-j\pi/4}}$$

$$= 125 e^{-j0.299} = -j0.095\pi$$