

PROBLEM:

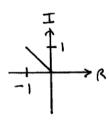
Simplify the following complex-valued expressions. Give your answer in either rectangular or polar form, whichever is most convenient. In parts (a)-(d) assume that A, α , and ϕ are positive real numbers. Your answers to parts (a)-(d) will be in terms of these quantities.

- (a) For $z = Ae^{-j\pi/3}$, determine a simple expression for $\Im m\{z^*\}$.
- (b) For $z = Ae^{-j\pi/3}$, determine a simple expression for $z + z^*$.
- (c) For $z = 10e^{j\phi}$, determine a simple expression for $\Re\{iz\}$.
- (d) For $z = -\alpha + i\alpha$, determine a simple expression for z in polar form.

McClellan, Schafer and Yoder, *Signal Processing First*, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. © 2003 Pearson Education, Inc.

a)
$$z = Ae^{-j\frac{\pi}{3}}$$

 $z^* = Ae^{+j\frac{\pi}{3}}$
 $Im(z^*) = Asin(\frac{\pi}{3}) = A\frac{\pi}{3}$


b)
$$z = Ae^{-\int \frac{\pi}{3}}$$
 Note: $z + z^{*} = 2Re(z)$
 $z + z^{*} = 2A\cos(\frac{\pi}{3}) = A$

c)
$$z = 10e^{y\Phi}$$

 $jz = 10e^{j(\Phi + \frac{\pi}{2})}$
 $Re(jz) = 10\cos(\Phi + \frac{\pi}{2})$
 $= -10sw(\Phi)$

$$= \alpha(-1+j)$$

$$= \alpha(-1+j)$$

$$= \sqrt{2}\alpha e^{j\sqrt{4}\pi}$$

