
PROBLEM:

For each of the frequency response plots (A, B, C, D, E, F), determine which one of the following systems (specified by either an H(z), a difference equation, or a MATLAB statement) matches the frequency response (magnitude only). There is only ONE correct match per graph. NOTE: The discrete-time frequency axis is **normalized**; it is $\hat{\omega}/\pi$.

$$S_1$$
: $y[n] = -0.8y[n-1] + x[n]$

$$S_5$$
: $H(z) = 1 + 0.64z^{-2}$

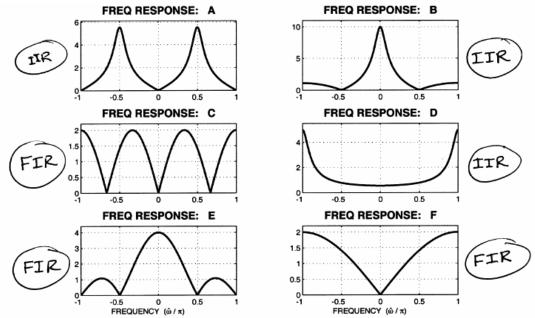
FREQUENCY (ω̂/π)

$$S_2$$
: H=freqz([1,0,1],[1,0,0.64],omega)

$$S_6: H(z) = \frac{1 - z^{-2}}{1 + 0.64z^{-2}}$$

$$S_3: \quad H(z) = \sum_{k=0}^3 z^{-k}$$

$$S_7: \quad y[n] = x[n] - x[n-1]$$


$$S_4: H(z) = \frac{1+z^{-2}}{1-0.8z^{-1}}$$

$$S_8: H(z) = 1 - z^{-3}$$

Mark your answer in the following table:

FREQUENCY RESPONSE	SYSTEM $(S_{\#})$	FREQUENCY RESPONSE	SYSTEM $(S_{\#})$
A		В	
С		D	
Е		F	

For each of the frequency response plots (A, B, C, D, E, F), determine which one of the following systems (specified by either an H(z), a difference equation, or a MATLAB statement) matches the frequency response (magnitude only). There is only ONE correct match per graph. NOTE: The discrete-time frequency axis is **normalized**; it is $\hat{\omega}/\pi$.

$$S_{1}: \quad y[n] = -0.8y[n-1] + x[n]$$

$$H_{1}(z) = \frac{1}{1 + 0.8z^{-1}}$$

$$S_{2}: \quad H=\text{freqz}([1,0,1],[1,0,0.64],\text{omega})$$

$$S_{3}: \quad H(z) = \sum_{k=0}^{3} z^{-k} = \frac{1 - z^{-4}}{1 - z^{-1}}$$

$$Z=-1,\pm j$$

Mark your answer in the following table: $H_2(z) = \frac{1+z^{-2}}{1+0.64z^{-2}}$ zeros at $z=\pm j$

FREQUENCY RESPONSE	SYSTEM $(S_{\#})$	FREQUENCY RESPONSE	SYSTEM $(S_{\#})$
A	56 6	В	S ₄ 4
C	S ₈ 8	D	5i 1
E	S ₂ 3	F	S_7 7
1			

DC values:
$$S_1$$
 is $\frac{1}{1.8} \approx .6$ S_3 is 4 S_5 is 1.64
 S_2 is $\frac{2}{1.64} \approx 1.25$ S_4 is $\frac{2}{.2} = 10$ S_6 , S_7 , S_8 are 0 at $\hat{\omega} = 0$ at $\hat{\omega} = \pi$, S_1 is $\frac{1}{1-.8} = \frac{1}{.2} = 5$