PROBLEM:

A linear time-invariant system has impulse response: $h(t) = e^{-(t-1)}u(t-1)$

(a) Plot $h(t - \tau)$ versus τ , for t = -3 and t = 2. Label your plot.

(b) Is the LTI system causal? Give a reason to support your answer.

(c) Is the system stable? Explain with a proof or counter-example.

(d) If the input is x(t) = u(t + 2), then it will be true that the output y(t) is zero for $t \le t_1$. Find t_1 .

(e) The rest of the output signal (for $t > t_1$) is non-zero, when the input is x(t) = u(t + 2). Use the convolution integral to find the non-zero portion of the output, i.e., find y(t) for $t > t_1$. *Hint: it might be easier to flip and slide* x(t).

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. © 2003 Pearson Education, Inc.

- (a) see MATLAB plot
- (b) An LTI system is causal if h(t)=0 for t<0Yes, this system is causal because u(t-1)=0 for t<1

(c) An LTI system is stable if
$$\int_{\infty}^{\infty} |h(t)| dt < \infty$$

$$\int_{\infty}^{\infty} |k(t)| dt = \int_{\infty}^{\infty} |e^{(t-i)} u(t-i)| dt \qquad \frac{Y_{es}}{1} + \frac{Y_{es}}{$$

(d)
$$y(t) = x(t) * f(t)$$

Thus we draw a "flip and slide" picture.
In this case flipping $f(t)$ shows the regions
The output $y(t)$ is zero when
 $\frac{1}{1}$
 $\frac{u(t+2)}{t}$ there is no overlap, i.e., when
 $t-1$
 $t \le -1$

(e) Partial overlap when $t-1 > -2 \implies t > -1$ $y(t) = \int_{-2}^{t-1} \frac{e^{(t-t-1)}}{e^{t}} dt$ $= e^{(t-1)} \int_{-2}^{t-1} e^{t} dt = e^{(t-1)} e^{t} \int_{-2}^{t-1} = e^{(t-1)} \left(e^{t-1} - e^{-2}\right)$ $y(t) = 1 - e^{t-1} \text{ for } t > -1$

(a)

