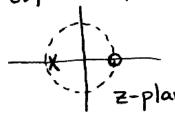


PROBLEM:

Given a feedback filter defined via the recursion:

$$y[n] = -0.9 y[n-1] + 3x[n] - 3x[n-1]$$
 (DIFFERENCE EQUATION)

- (a) Find the z-transform operator representation H(z) for the system in the difference equation.
- (b) Find the poles and zeros of the system and plot their location in the z-plane.
- (c) Determine the impulse response: give a formula.
- (d) Plot the impulse response versus n.



(a)
$$y[n] = -0.9 y[n-1] + 3x[n] - 3x[n-1]$$

 $a_1 = -0.9$ $b_0 = 3$ $b_1 = -3$
 $H(z) = \frac{b_0 + b_1 z^{-1}}{1 - a_1 z^{-1}} = \frac{3 - 3z^{-1}}{1 + 0.9z^{-1}}$

(b) Multiply top } bottom by z

$$H(z) = \frac{3z-3}{z+0.9}$$

(c) Impulse Response: (Make a table)

(Marie of Carty)							
n 1	401	01	' '	2	3	4	
X[N]=6[N]				0		0	
y(n)= h(n)	0	3	-5.7	5.13	-4.617	4.15	

