

#### PROBLEM:

For each H(z), determine all of the poles and zeroes, including those at z = 0 and  $z = \infty$ .

#### System Function, H(z)

(a) 
$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}$$

# ANS =

(b) 
$$H(z) = \frac{1}{1 - 2z^{-1}}$$

$$(c) H(z) = \frac{1}{z+2}$$

(d) 
$$H(z) = \frac{\frac{1}{2} - \frac{1}{2}z^{-1}}{\frac{1}{2} + z^{-1}}$$

### **Poles and Zeros**

- 1. pole at z = -2, zero at  $z = \infty$ .
- 2. pole at z = -2, zero at z = 0.
- 3. pole at z = -2, zero at z = 1.
- 4. pole at z = 2, zero at z = 1.
- 5. pole at z = 2, zero at z = 0.
- 6. pole at z = 0, zero at z = 2.
- 7. pole at  $z = \frac{1}{2}$ , zero at z = 0.
- 8. pole at  $z = \frac{1}{2}$ , zero at  $z = \infty$ .



For each H(z), determine all of the poles and zeroes, including those at z=0 and  $z=\infty$ .

## System Function, H(z)

(a) 
$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} = \frac{2}{2 - \frac{1}{2}}$$
ANS = 7

(b) 
$$H(z) = \frac{1}{1 - 2z^{-1}} = \frac{2}{2 - 2}$$
ANS = 5

(c) 
$$H(z) = \frac{1}{z+2}$$
  $\lim_{z\to\infty} H(z) = 0$ 

(d) 
$$H(z) = \frac{\frac{1}{2} - \frac{1}{2}z^{-1}}{\frac{1}{2} + z^{-1}} = \frac{2 - 1}{2 + 2}$$
ANS = 3

#### Poles and Zeros

- 1. pole at z = -2, zero at  $z = \infty$ .
- 2. pole at z = -2, zero at z = 0.
- 3. pole at z = -2, zero at z = 1.
- 4. pole at z = 2, zero at z = 1.
- 5. pole at z = 2, zero at z = 0.
- 6. pole at z = 0, zero at z = 2.
- 7. pole at  $z = \frac{1}{2}$ , zero at z = 0.
- 8. pole at  $z = \frac{1}{2}$ , zero at  $z = \infty$ .